468 research outputs found

    Stability Analysis of A Class of Hybrid Stochastic Retarded Systems Under Asynchronous Switching

    Get PDF

    Stability analysis for continuous-time switched systems with stochastic switching signals

    Get PDF
    This paper is concerned with the stability problem of randomly switched systems. By using the probability analysis method, the almost surely globally asymptotical stability and almost surely exponential stability are investigated for switched systems with semi-Markovian switching, Markovian switching and renewal process switching signals, respectively. Two examples are presented to demonstrate the effectiveness of the proposed results, in which an example of consensus of multi-agent systems with nonlinear dynamics is taken into account

    On Input-to-State Stability of Impulsive Stochastic Systems with Time Delays

    Get PDF
    This paper is concerned with pth moment input-to-state stability (p-ISS) and stochastic input-to-state stability (SISS) of impulsive stochastic systems with time delays. Razumikhin-type theorems ensuring p-ISS/SISS are established for the mentioned systems with external input affecting both the continuous and the discrete dynamics. It is shown that when the impulse-free delayed stochastic dynamics are p-ISS/SISS but the impulses are destabilizing, the p-ISS/SISS property of the impulsive stochastic systems can be preserved if the length of the impulsive interval is large enough. In particular, if the impulse-free delayed stochastic dynamics are p-ISS/SISS and the discrete dynamics are marginally stable for the zero input, the impulsive stochastic system is p-ISS/SISS regardless of how often or how seldom the impulses occur. To overcome the difficulties caused by the coexistence of time delays, impulses, and stochastic effects, Razumikhin techniques and piecewise continuous Lyapunov functions as well as stochastic analysis techniques are involved together. An example is provided to illustrate the effectiveness and advantages of our results

    Nonlinear Systems

    Get PDF
    Open Mathematics is a challenging notion for theoretical modeling, technical analysis, and numerical simulation in physics and mathematics, as well as in many other fields, as highly correlated nonlinear phenomena, evolving over a large range of time scales and length scales, control the underlying systems and processes in their spatiotemporal evolution. Indeed, available data, be they physical, biological, or financial, and technologically complex systems and stochastic systems, such as mechanical or electronic devices, can be managed from the same conceptual approach, both analytically and through computer simulation, using effective nonlinear dynamics methods. The aim of this Special Issue is to highlight papers that show the dynamics, control, optimization and applications of nonlinear systems. This has recently become an increasingly popular subject, with impressive growth concerning applications in engineering, economics, biology, and medicine, and can be considered a veritable contribution to the literature. Original papers relating to the objective presented above are especially welcome subjects. Potential topics include, but are not limited to: Stability analysis of discrete and continuous dynamical systems; Nonlinear dynamics in biological complex systems; Stability and stabilization of stochastic systems; Mathematical models in statistics and probability; Synchronization of oscillators and chaotic systems; Optimization methods of complex systems; Reliability modeling and system optimization; Computation and control over networked systems

    Flow and Noise Predictions of Coaxial Jets using LES and RANS Methods

    Get PDF
    Flow and noise solutions of the two Large Eddy Simulation (LES) approaches are evaluated for the jet flow conditions corresponding to a benchmark co-axial jet case from the EU CoJeN (Computation of Coaxial Jet Noise) experiment. The jet is heated and issues for a short-cowl axi-symmetric nozzle with a central body at a transonic speed. The first LES method is based on the Compact Accurately Boundary-Adjusting high-REsolution Technique (CABARET) scheme, for which implementation features include asynchronous time stepping at an optimal Courant–Friedrichs–Lewy (CFL) number, a wall model, and a synthetic turbulence inflow boundary condition. The CABARET LES is implemented on Graphics Processing Units (GPUs). The second LES approach is based on the hybrid Reynolds Averaged Navier-Stokes (RANS)/ Implicit LES method that uses a mixture of high-order Roe and WENO scheme and a wall distance model of the Improved Delayed Detached Eddy Simulation (IDDES) type. The RANS/ILES method is run on an MPI cluster. Two grid generation approaches are considered: the unstructured grid using OpenFOAM utility “snappyHexMesh” (sHM) and the conventional structured multiblock body-fitted curvilinear grid. The LES flow solutions are compared with the experiment and also with solutions obtained from the standard axi-symmetric RANS method using the k- turbulence model. For noise predictions, The LES solutions are coupled with the penetrable surface formation of the Ffowcs Williams –Hawkings method. The results of noise predictions are compared with the experiment and the effect of different LES grids and acoustic integration surfaces is discussed

    Flow and Noise Predictions of Coaxial Jets

    Get PDF

    Sampled-data Networked Control Systems: A Lyapunov-Krasovskii Approach

    Get PDF
    The main goal of this thesis is to develop computationally efficient methods for stability analysis and controller synthesis of sampled-data networked control systems. In sampled-data networked control systems, the sensory information and feedback signals are exchanged among different components of the system (sensors, actuators, and controllers) through a communication network. Stabilization of sampled-data networked control systems is a challenging problem since the introduction of multirate sample and holds, time-delays, and packet losses into the system degrades its performance and can lead to instability. A diverse range of systems with linear, piecewise affine (PWA), and nonlinear vector fields are studied in this thesis. PWA systems are a class of state-based switched systems with affine vector field in each mode. Stabilization of PWA networked control systems are even more challenging since they simultaneously involve switches due to the hybrid vector fields (state-based switching) and switches due to the sample and hold devices in the network (event-based switching). The objectives of this thesis are: (a) to design controllers that guarantee exponential stability of the system for a desired sampling period; (b) to design observers that guarantee exponential convergence of the estimation error to the origin for a desired sampling period; and (c) given a controller, to find the maximum allowable network-induced delay that guarantees exponential stability of the sampled-data networked control system. Lyapunov-Krasovskii based approaches are used to propose sufficient stability and stabilization conditions for sampled-data networked control systems. Convex relaxation techniques are employed to cast the proposed stability analysis and controller synthesis criteria in terms of linear matrix inequalities that can be solved efficiently

    Qualitative Studies of Nonlinear Hybrid Systems

    Get PDF
    A hybrid system is a dynamical system that exhibits both continuous and discrete dynamic behavior. Hybrid systems arise in a wide variety of important applications in diverse areas, ranging from biology to computer science to air traffic dynamics. The interaction of continuous- and discrete-time dynamics in a hybrid system often leads to very rich dynamical behavior and phenomena that are not encountered in purely continuous- or discrete-time systems. Investigating the dynamical behavior of hybrid systems is of great theoretical and practical importance. The objectives of this thesis are to develop the qualitative theory of nonlinear hybrid systems with impulses, time-delay, switching modes, and stochastic disturbances, to develop algorithms and perform analysis for hybrid systems with an emphasis on stability and control, and to apply the theory and methods to real-world application problems. Switched nonlinear systems are formulated as a family of nonlinear differential equations, called subsystems, together with a switching signal that selects the continuous dynamics among the subsystems. Uniform stability is studied emphasizing the situation where both stable and unstable subsystems are present. Uniformity of stability refers to both the initial time and a family of switching signals. Stabilization of nonlinear systems via state-dependent switching signal is investigated. Based on assumptions on a convex linear combination of the nonlinear vector fields, a generalized minimal rule is proposed to generate stabilizing switching signals that are well-defined and do not exhibit chattering or Zeno behavior. Impulsive switched systems are hybrid systems exhibiting both impulse and switching effects, and are mathematically formulated as a switched nonlinear system coupled with a sequence of nonlinear difference equations that act on the switched system at discrete times. Impulsive switching signals integrate both impulsive and switching laws that specify when and how impulses and switching occur. Invariance principles can be used to investigate asymptotic stability in the absence of a strict Lyapunov function. An invariance principle is established for impulsive switched systems under weak dwell-time signals. Applications of this invariance principle provide several asymptotic stability criteria. Input-to-state stability notions are formulated in terms of two different measures, which not only unify various stability notions under the stability theory in two measures, but also bridge this theory with the existent input/output theories for nonlinear systems. Input-to-state stability results are obtained for impulsive switched systems under generalized dwell-time signals. Hybrid time-delay systems are hybrid systems with dependence on the past states of the systems. Switched delay systems and impulsive switched systems are special classes of hybrid time-delay systems. Both invariance property and input-to-state stability are extended to cover hybrid time-delay systems. Stochastic hybrid systems are hybrid systems subject to random disturbances, and are formulated using stochastic differential equations. Focused on stochastic hybrid systems with time-delay, a fundamental theory regarding existence and uniqueness of solutions is established. Stabilization schemes for stochastic delay systems using state-dependent switching and stabilizing impulses are proposed, both emphasizing the situation where all the subsystems are unstable. Concerning general stochastic hybrid systems with time-delay, the Razumikhin technique and multiple Lyapunov functions are combined to obtain several Razumikhin-type theorems on both moment and almost sure stability of stochastic hybrid systems with time-delay. Consensus problems in networked multi-agent systems and global convergence of artificial neural networks are related to qualitative studies of hybrid systems in the sense that dynamic switching, impulsive effects, communication time-delays, and random disturbances are ubiquitous in networked systems. Consensus protocols are proposed for reaching consensus among networked agents despite switching network topologies, communication time-delays, and measurement noises. Focused on neural networks with discontinuous neuron activation functions and mixed time-delays, sufficient conditions for existence and uniqueness of equilibrium and global convergence and stability are derived using both linear matrix inequalities and M-matrix type conditions. Numerical examples and simulations are presented throughout this thesis to illustrate the theoretical results
    • …
    corecore