232 research outputs found

    Opportunistic Routing with Network Coding in Powerline Communications

    Get PDF
    Opportunistic Routing (OR) can be used as an alternative to the legacy routing (LR) protocols in networks with a broadcast lossy channel and possibility of overhearing the signal. The power line medium creates such an environment. OR can better exploit the channel than LR because it allows the cooperation of all nodes that receive any data. With LR, only a chain of nodes is selected for communication. Other nodes drop the received information. We investigate OR for the one-source one-destination scenario with one traffic flow. First, we evaluate the upper bound on the achievable data rate and advocate the decentralized algorithm for its calculation. This knowledge is used in the design of Basic Routing Rules (BRR). They use the link quality metric that equals the upper bound on the achievable data rate between the given node and the destination. We call it the node priority. It considers the possibility of multi-path communication and the packet loss correlation. BRR allows achieving the optimal data rate pertaining certain theoretical assumptions. The Extended BRR (BRR-E) are free of them. The major difference between BRR and BRR-E lies in the usage of Network Coding (NC) for prognosis of the feedback. In this way, the protocol overhead can be severely reduced. We also study Automatic Repeat-reQuest (ARQ) mechanism that is applicable with OR. It differs to ARQ with LR in that each sender has several sinks and none of the sinks except destination require the full recovery of the original message. Using BRR-E, ARQ and other services like network initialization and link state control, we design the Advanced Network Coding based Opportunistic Routing protocol (ANChOR). With the analytic and simulation results we demonstrate the near optimum performance of ANChOR. For the triangular topology, the achievable data rate is just 2% away from the theoretical maximum and it is up to 90% higher than it is possible to achieve with LR. Using the G.hn standard, we also show the full protocol stack simulation results (including IP/UDP and realistic channel model). In this simulation we revealed that the gain of OR to LR can be even more increased by reducing the head-of-the-line problem in ARQ. Even considering the ANChOR overhead through additional headers and feedbacks, it outperforms the original G.hn setup in data rate up to 40% and in latency up to 60%.:1 Introduction 2 1.1 Intra-flow Network Coding 6 1.2 Random Linear Network Coding (RLNC) 7 2 Performance Limits of Routing Protocols in PowerLine Communications (PLC) 13 2.1 System model 14 2.2 Channel model 14 2.3 Upper bound on the achievable data rate 16 2.4 Achieving the upper bound data rate 17 2.5 Potential gain of Opportunistic Routing Protocol (ORP) over Common Single-path Routing Protocol (CSPR) 19 2.6 Evaluation of ORP potential 19 3 Opportunistic Routing: Realizations and Challenges 24 3.1 Vertex priority and cooperation group 26 3.2 Transmission policy in idealized network 34 3.2.1 Basic Routing Rules (BRR) 36 3.3 Transmission policy in real network 40 3.3.1 Purpose of Network Coding (NC) in ORP 41 3.3.2 Extended Basic Routing Rules (BRR) (BRR-E) 43 3.4 Automatic ReQuest reply (ARQ) 50 3.4.1 Retransmission request message contents 51 3.4.2 Retransmission Request (RR) origination and forwarding 66 3.4.3 Retransmission response 67 3.5 Congestion control 68 3.5.1 Congestion control in our work 70 3.6 Network initialization 74 3.7 Formation of the cooperation groups (coalitions) 76 3.8 Advanced Network Coding based Opportunistic Routing protocol (ANChOR) header 77 3.9 Communication of protocol information 77 3.10 ANChOR simulation . .79 3.10.1 ANChOR information in real time .80 3.10.2 Selection of the coding rate 87 3.10.3 Routing Protocol Information (RPI) broadcasting frequency 89 3.10.4 RR contents 91 3.10.5 Selection of RR forwarder 92 3.10.6 ANChOR stability 92 3.11 Summary 95 4 ANChOR in the Gigabit Home Network (G.hn) Protocol 97 4.1 Compatibility with the PLC protocol stack 99 4.2 Channel and noise model 101 4.2.1 In-home scenario 102 4.2.2 Access network scenario 102 4.3 Physical layer (PHY) layer implementation 102 4.3.1 Bit Allocation Algorithm (BAA) 103 4.4 Multiple Access Control layer (MAC) layer 109 4.5 Logical Link Control layer (LLC) layer 111 4.5.1 Reference Automatic Repeat reQuest (ARQ) 111 4.5.2 Hybrid Automatic Repeat reQuest (HARQ) in ANChOR 114 4.5.3 Modeling Protocol Data Unit (PDU) erasures on LLC 116 4.6 Summary 117 5 Study of G.hn with ANChOR 119 5.1 ARQ analysis 119 5.2 Medium and PHY requirements for “good” cooperation 125 5.3 Access network scenario 128 5.4 In-home scenario 135 5.4.1 Modeling packet erasures 136 5.4.2 Linear Dependence Ratio (LDR) 139 5.4.3 Worst case scenario 143 5.4.4 Analysis of in-home topologies 145 6 Conclusions . . . . . . . . . . . . . . . 154 A Proof of the neccessity of the exclusion rule 160 B Gain of ORPs to CSRPs 163 C Broadcasting rule 165 D Proof of optimality of BRR for triangular topology 167 E Reducing the retransmission probability 168 F Calculation of Expected Average number of transmissions (EAX) for topologies with bi-directional links 170 G Feedback overhead of full coding matrices 174 H Block diagram of G.hn physical layer in ns-3 model 175 I PER to BER mapping 17

    Instantly Decodable Network Coding: From Centralized to Device-to-Device Communications

    Get PDF
    From its introduction to its quindecennial, network coding has built a strong reputation for enhancing packet recovery and achieving maximum information flow in both wired and wireless networks. Traditional studies focused on optimizing the throughput of the system by proposing elaborate schemes able to reach the network capacity. With the shift toward distributed computing on mobile devices, performance and complexity become both critical factors that affect the efficiency of a coding strategy. Instantly decodable network coding presents itself as a new paradigm in network coding that trades off these two aspects. This paper review instantly decodable network coding schemes by identifying, categorizing, and evaluating various algorithms proposed in the literature. The first part of the manuscript investigates the conventional centralized systems, in which all decisions are carried out by a central unit, e.g., a base-station. In particular, two successful approaches known as the strict and generalized instantly decodable network are compared in terms of reliability, performance, complexity, and packet selection methodology. The second part considers the use of instantly decodable codes in a device-to-device communication network, in which devices speed up the recovery of the missing packets by exchanging network coded packets. Although the performance improvements are directly proportional to the computational complexity increases, numerous successful schemes from both the performance and complexity viewpoints are identified

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization

    Network coding for computer networking

    Get PDF
    Conventional communication networks route data packets in a store-and-forward mode. A router buffers received packets and forwards them intact towards their intended destination. Network Coding (NC), however, generalises this method by allowing the router to perform algebraic operations on the packets before forwarding them. The purpose of NC is to improve the network performance to achieve its maximum capacity also known as max-flow min-cut bound. NC has become very well established in the field of information theory, however, practical implementations in real-world networks is yet to be explored. In this thesis, new implementations of NC are brought forward. The effect of NC on flow error control protocols and queuing over computer networks is investigated by establishing and designing a mathematical and simulation framework. One goal of such investigation is to understand how NC technique can reduce the number of packets required to acknowledge the reception of those sent over the network while error-control schemes are employed. Another goal is to control the network queuing stability by reducing the number of packets required to convey a set of information. A custom-built simulator based on SimEvents® has been developed in order to model several scenarios within this approach. The work in this thesis is divided into two key parts. The objective of the first part is to study the performance of communication networks employing error control protocols when NC is adopted. In particular, two main Automatic Repeat reQuest (ARQ) schemes are invoked, namely the Stop-and-Wait (SW) and Selective Repeat (SR) ARQ. Results show that in unicast point-to point communication, the proposed NC scheme offers an increase in the throughput over traditional SW ARQ between 2.5% and 50.5% at each link, with negligible decoding delay. Additionally, in a Butterfly network, SR ARQ employing NC achieves a throughput gain between 22% and 44% over traditional SR ARQ when the number of incoming links to the intermediate node varies between 2 and 5. Moreover, in an extended Butterfly network, NC offered a throughput increase of up to 48% under an error-free scenario and 50% in the presence of errors. Despite the extensive research on synchronous NC performance in various fields, little has been said about its queuing behaviour. One assumption is that packets are served following a Poisson distribution. The packets from different streams are coded prior to being served and then exit through only one stream. This study determines the arrival distribution that coded packets follow at the serving node. In general this leads to study general queuing systems of type G/M/1. Hence, the objective of the second part of this study is twofold. The study aims to determine the distribution of the coded packets and estimate the waiting time faced by coded packets before their complete serving process. Results show that NC brings a new solution for queuing stability as evidenced by the small waiting time the coded packets spend in the intermediate node queue before serving. This work is further enhanced by studying the server utilization in traditional routing and NC scenarios. NC-based M/M/1 with finite capacity K is also analysed to investigate packet loss probability for both scenarios. Based on the results achieved, the utilization of NC in error-prone and long propagation delay networks is recommended. Additionally, since the work provides an insightful prediction of particular networks queuing behaviour, employing synchronous NC can bring a solution for systems’ stability with packet-controlled sources and limited input buffers

    Opportunistic routing in wireless mesh networks

    Get PDF
    Advances in communication and networking technologies are rapidly making ubiquitous network connectivity a reality. In recent years, Wireless Mesh Networks (WMNs) have already become very popular and been receiving an increasing amount of attention by the research community. Basically, a WMN consists of simple mesh routers and mesh clients, where mesh routers form the backbone of WMN. Due to the limited transmission range of the radio, many pairs of nodes in WMN may not be able to communicate directly, hence they need other intermediate nodes to forward packets for them. Routing in such networks is an important issue and it poses great challenges. Opportunistic Routing (OR) has been investigated in recent years as a way to increase the performance of WMNs by exploiting its broadcast nature. In OR, in contrast to traditional routing, instead of pre-selecting a single specic node to be the next-hop as a forwarder for a packet, an ordered set of nodes (referred to as candidates) is selected as the potential next-hop forwarders. Thus, the source can use multiple potential paths to deliver the packets to the destination. More specically, when the current node transmits a packet, all the candidates that successfully receive it will coordinate with each other to determine which one will actually forward it, while the others will simply discard the packet. This dissertation studies the properties, performance, maximum gain, candidate selection algorithms and multicast delivery issues about Opportunistic Routing in WMNs. Firstly, we focus on the performance analysis of OR by proposing a Discrete Time Markov Chain (DTMC). This model can be used to evaluate OR in terms of expected number of transmissions from the source to the destination. Secondly, we apply our Markov model to compare relevant candidate selection algorithms that have been proposed in the literature. They range from non-optimum, but simple, to optimum, but with a high computational cost. Thirdly, the set of candidates which a node uses and priority order of them have a signicant impact on the performance of OR. Therefore, using a good metric and algorithm to select and order the candidates are key factors in designing an OR protocol. As the next contribution we propose a new metric that measures the expected distance progress of sending a packet using a set of candidates. Based on this metric we propose a candidate selection algorithm which its performance is very close to the optimum algorithm although our algorithm runs much faster. Fourthly, we have investigated the maximum gain that can be obtained using OR. We have obtained some equations that yield the distances of the candidates in OR such that the per transmission progress towards the destination is maximized. Based on these equations we have proposed a novel candidate selection algorithm. Our new algorithm only needs the geographical location of nodes. The performance of our proposal is very close to the optimum candidate selection algorithm although our algorithm runs much faster. Finally, using OR to support multicast is an other issue that we have investigated in this thesis. We do so by proposing a new multicast protocol which uses OR. Unlike traditional multicast protocols, there is no designated next-hop forwarder for each destination in our protocol, thus the delivery ratio is maximized by taking advantage of spatial diversity

    Network coding-aided MAC protocols for cooperative wireless networks

    Get PDF
    The introduction of third generation (3G) technologies has caused a vast proliferation of wireless devices and networks, generating an increasing demand for high level Quality of Service (QoS). The wide spread of mobile applications has further reinforced the user need for communication, motivating at the same time the concepts of user cooperation and data dissemination. However, this trend towards continuous exchange of information and ubiquitous connectivity is inherently restricted by the energy-greedy functionalities of high-end devices. These limitations, along with the pressure exerted on the Information and Communications Technology (ICT) industry towards energy awareness, have induced the design of novel energy efficient schemes and algorithms. In this context, the Medium Access Control (MAC) layer plays a key role, since it is mainly responsible for the channel access regulation, the transmission scheduling and the resource allocation, thus constituting an appropriate point to effectively address energy efficiency issues that arise due to the users overcrowding. This dissertation provides a contribution to the design, analysis and evaluation of novel MAC protocols for cooperative wireless networks. In our attempt to design energy efficient MAC schemes, we were extensively assisted by the introduction of new techniques, such as Network Coding (NC), that intrinsically bring considerable gains in system performance. The main thesis contributions are divided into two parts. The first part presents NCCARQ, a novel NC-aided Cooperative Automatic Repeat reQuest (ARQ) MAC protocol for wireless networks. NCCARQ introduces a new access paradigm for cooperative ARQ schemes, exploiting NC benefits in bidirectional communication among wireless users. The NCCARQ performance in terms of QoS and energy efficiency is assessed by means of analytical probabilistic models and extensive computer-based simulations, revealing the significant gains we can achieve compared to standardized MAC solutions. In addition, the impact of realistic wireless channel conditions on the MAC protocol operation further motivated us to study the NCCARQ performance in wireless links affected by correlated shadowing, showing that the channel correlation may adversely affect the distributed cooperation benefits. The second part of the thesis is dedicated to the investigation of MAC issues in wireless data dissemination scenarios. In particular, the existence of multiple source nodes in such scenarios generates conflicting situations, considering the selfish behavior of the wireless devices that want to maximize their battery lifetime. Bearing in mind the energy efficiency importance, we propose game theoretic medium access strategies, applying energy-based utility functions which inherently imply energy awareness. In addition, Random Linear NC (RLNC) techniques are adopted to eliminate the need of exchanging excessive control packets, while Analog NC (ANC) is employed to efface the impact of collisions throughout the communication. During the elaboration of this thesis, two general key conclusions have been extracted. First, there is a fundamental requirement for implementation of new MAC protocols in order to effectively deal with state-of-the-art techniques (e.g., NC), recently introduced to enhance both the performance and the energy efficiency of the network. Second, we highlight the importance of designing novel energy efficient MAC protocols, taking into account that traditional approaches - designed mainly to assist the collision avoidance in wireless networks - tend to be obsolete.La presente tesis doctoral contribuye al diseño, análisis y evaluación de nuevos protocolos MAC cooperativos para redes inalámbricas. La introducción de nuevas técnicas, tales como la codificación de red (NC), que intrínsecamente llevan un considerable aumento en el rendimiento del sistema, nos ayudó ampliamente durante el diseño de protocolos MAC energéticamente eficientes. Las principales contribuciones de esta tesis se dividen en dos partes. La primera parte presenta el NCCARQ, un protocolo cooperativo de retransmisión automática (ARQ), asistido por NC para redes inalámbricas. La segunda parte de la tesis se centra en el diseño de protocolos de capa MAC en escenarios inalámbricos de difusión de datos. Teniendo en cuenta la importancia de la eficiencia energética, se proponen técnicas de acceso al medio basadas en teoría de juegos dónde las funciones objetivo están motivadas por el consumo energético. Las soluciones propuestas son evaluadas por medio de modelos analíticos y simulaciones por ordenador
    corecore