3,376 research outputs found

    Trajectory Tracking Using Adaptive Fractional PID Control of Biped Robots with Time-Delay Feedback

    Get PDF
    This paper presents the application of fractional order time-delay adaptive neural networks to the trajectory tracking for chaos synchronization between Fractional Order delayed plant, reference and fractional order time-delay adaptive neural networks. For this purpose, we obtained two control laws and laws of adaptive weights online, obtained using the fractional order Lyapunov-Krasovskii stability analysis methodology. The main methodologies, on which the approach is based, are fractional order PID the fractional order Lyapunov-Krasovskii functions methodology, although the results we obtain are applied to a wide class of non-linear systems, we will apply it in this chapter to a bipedal robot. The structure of the biped robot is designed with two degrees of freedom per leg, corresponding to the knee and hip joints. Since torso and ankle are not considered, it is obtained a 4-DOF system, and each leg, we try to force this biped robot to track a reference signal given by undamped Duffing equation. To verify the analytical results, an example of dynamical network is simulated, and two theorems are proposed to ensure the tracking of the nonlinear system. The tracking error is globally asymptotically stabilized by two control laws derived based on a Lyapunov-Krasovskii functional

    On the validity of memristor modeling in the neural network literature

    Full text link
    An analysis of the literature shows that there are two types of non-memristive models that have been widely used in the modeling of so-called "memristive" neural networks. Here, we demonstrate that such models have nothing in common with the concept of memristive elements: they describe either non-linear resistors or certain bi-state systems, which all are devices without memory. Therefore, the results presented in a significant number of publications are at least questionable, if not completely irrelevant to the actual field of memristive neural networks

    Mathematical problems for complex networks

    Get PDF
    Copyright @ 2012 Zidong Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This article is made available through the Brunel Open Access Publishing Fund.Complex networks do exist in our lives. The brain is a neural network. The global economy is a network of national economies. Computer viruses routinely spread through the Internet. Food-webs, ecosystems, and metabolic pathways can be represented by networks. Energy is distributed through transportation networks in living organisms, man-made infrastructures, and other physical systems. Dynamic behaviors of complex networks, such as stability, periodic oscillation, bifurcation, or even chaos, are ubiquitous in the real world and often reconfigurable. Networks have been studied in the context of dynamical systems in a range of disciplines. However, until recently there has been relatively little work that treats dynamics as a function of network structure, where the states of both the nodes and the edges can change, and the topology of the network itself often evolves in time. Some major problems have not been fully investigated, such as the behavior of stability, synchronization and chaos control for complex networks, as well as their applications in, for example, communication and bioinformatics

    Fractals in the Nervous System: conceptual Implications for Theoretical Neuroscience

    Get PDF
    This essay is presented with two principal objectives in mind: first, to document the prevalence of fractals at all levels of the nervous system, giving credence to the notion of their functional relevance; and second, to draw attention to the as yet still unresolved issues of the detailed relationships among power law scaling, self-similarity, and self-organized criticality. As regards criticality, I will document that it has become a pivotal reference point in Neurodynamics. Furthermore, I will emphasize the not yet fully appreciated significance of allometric control processes. For dynamic fractals, I will assemble reasons for attributing to them the capacity to adapt task execution to contextual changes across a range of scales. The final Section consists of general reflections on the implications of the reviewed data, and identifies what appear to be issues of fundamental importance for future research in the rapidly evolving topic of this review

    Adaptive Backstepping Control for Fractional-Order Nonlinear Systems with External Disturbance and Uncertain Parameters Using Smooth Control

    Full text link
    In this paper, we consider controlling a class of single-input-single-output (SISO) commensurate fractional-order nonlinear systems with parametric uncertainty and external disturbance. Based on backstepping approach, an adaptive controller is proposed with adaptive laws that are used to estimate the unknown system parameters and the bound of unknown disturbance. Instead of using discontinuous functions such as the sign\mathrm{sign} function, an auxiliary function is employed to obtain a smooth control input that is still able to achieve perfect tracking in the presence of bounded disturbances. Indeed, global boundedness of all closed-loop signals and asymptotic perfect tracking of fractional-order system output to a given reference trajectory are proved by using fractional directed Lyapunov method. To verify the effectiveness of the proposed control method, simulation examples are presented.Comment: Accepted by the IEEE Transactions on Systems, Man and Cybernetics: Systems with Minor Revision

    Recent Advances and Applications of Fractional-Order Neural Networks

    Get PDF
    This paper focuses on the growth, development, and future of various forms of fractional-order neural networks. Multiple advances in structure, learning algorithms, and methods have been critically investigated and summarized. This also includes the recent trends in the dynamics of various fractional-order neural networks. The multiple forms of fractional-order neural networks considered in this study are Hopfield, cellular, memristive, complex, and quaternion-valued based networks. Further, the application of fractional-order neural networks in various computational fields such as system identification, control, optimization, and stability have been critically analyzed and discussed

    Synchronization of a class of fractional-order neural networks with multiple time delays by comparison principles

    Get PDF
    This paper studies the synchronization of fractional-order neural networks with multiple time delays. Based on an inequality of fractional-order and comparison principles of linear fractional equation with multiple time delays, some sufficient conditions for synchronization of master-slave systems are obtained. Example and related simulations are given to demonstrate the feasibility of the theoretical results

    A novel delay-dependent asymptotic stability conditions for differential and Riemann-Liouville fractional differential neutral systems with constant delays and nonlinear perturbation

    Get PDF
    The novel delay-dependent asymptotic stability of a differential and Riemann-Liouville fractional differential neutral system with constant delays and nonlinear perturbation is studied. We describe the new asymptotic stability criterion in the form of linear matrix inequalities (LMIs), using the application of zero equations, model transformation and other inequalities. Then we show the new delay-dependent asymptotic stability criterion of a differential and Riemann-Liouville fractional differential neutral system with constant delays. Furthermore, we not only present the improved delay-dependent asymptotic stability criterion of a differential and Riemann-Liouville fractional differential neutral system with single constant delay but also the new delay-dependent asymptotic stability criterion of a differential and Riemann-Liouville fractional differential neutral equation with constant delays. Numerical examples are exploited to represent the improvement and capability of results over another research as compared with the least upper bounds of delay and nonlinear perturbation.This work is supported by Science Achievement Scholarship of Thailand (SAST), Research and Academic Affairs Promotion Fund, Faculty of Science, Khon Kaen University, Fiscal year 2020 and National Research Council of Thailand and Khon Kaen University, Thailand (6200069)

    State Estimation for Fractional-Order Complex Dynamical Networks with Linear Fractional Parametric Uncertainty

    Get PDF
    This paper deals with state estimation problem for a class of fractional-order complex dynamical networks with parametric uncertainty. The parametric uncertainty is assumed to be of linear fractional form. Firstly, based on the properties of Kronecker product and the stability of fractional-order system, a sufficient condition is derived for robust asymptotic stability of linear fractional-order augmented system. Secondly, state estimation problem is then studied for the same fractional-order complex networks, where the purpose is to design a state estimator to estimate the network state through available output measurement, the existence conditions of designing state estimator are derived using matrix's singular value decomposition and LMI techniques. These conditions are in the form of linear matrix inequalities which can be readily solved by applying the LMI toolbox. Finally, two numerical examples are provided to demonstrate the validity of our approach
    • …
    corecore