6,697 research outputs found

    HMM based scenario generation for an investment optimisation problem

    Get PDF
    This is the post-print version of the article. The official published version can be accessed from the link below - Copyright @ 2012 Springer-Verlag.The Geometric Brownian motion (GBM) is a standard method for modelling financial time series. An important criticism of this method is that the parameters of the GBM are assumed to be constants; due to this fact, important features of the time series, like extreme behaviour or volatility clustering cannot be captured. We propose an approach by which the parameters of the GBM are able to switch between regimes, more precisely they are governed by a hidden Markov chain. Thus, we model the financial time series via a hidden Markov model (HMM) with a GBM in each state. Using this approach, we generate scenarios for a financial portfolio optimisation problem in which the portfolio CVaR is minimised. Numerical results are presented.This study was funded by NET ACE at OptiRisk Systems

    A mixed integer linear programming model for optimal sovereign debt issuance

    Get PDF
    Copyright @ 2011, Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in the European Journal of Operational Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version is available at the link below.Governments borrow funds to finance the excess of cash payments or interest payments over receipts, usually by issuing fixed income debt and index-linked debt. The goal of this work is to propose a stochastic optimization-based approach to determine the composition of the portfolio issued over a series of government auctions for the fixed income debt, to minimize the cost of servicing debt while controlling risk and maintaining market liquidity. We show that this debt issuance problem can be modeled as a mixed integer linear programming problem with a receding horizon. The stochastic model for the interest rates is calibrated using a Kalman filter and the future interest rates are represented using a recombining trinomial lattice for the purpose of scenario-based optimization. The use of a latent factor interest rate model and a recombining lattice provides us with a realistic, yet very tractable scenario generator and allows us to do a multi-stage stochastic optimization involving integer variables on an ordinary desktop in a matter of seconds. This, in turn, facilitates frequent re-calibration of the interest rate model and re-optimization of the issuance throughout the budgetary year allows us to respond to the changes in the interest rate environment. We successfully demonstrate the utility of our approach by out-of-sample back-testing on the UK debt issuance data

    Stochastic Optimization for Financial Decision Making: Portfolio Selection Problem [QA402.5. K45 2008 f rb].

    Get PDF
    Tesis ini mengaplikasikan pengoptimuman berstokastik sebagai penyelesaian kepada masaalah pemilihan portfolio. Pemilihan portfolio merupakan satu bidang penting dalam pembuatan keputusan kewangan. Ciri penting bagi masaalah dalam pasaran kewangan umumnya terpisah dan tertakrif dengan jelas. In this thesis stochastic optimization was applied to solve portfolio selection problem. Portfolio selection problem is one of the important areas in financial decision making. An important distinguishing feature of problems in financial markets is that they are generally separable and well defined

    Heavy-tailed distributions in VaR calculations

    Get PDF
    The essence of the Value-at-Risk (VaR) and Expected Shortfall (ES) computations is estimation of low quantiles in the portfolio return distributions. Hence, the performance of market risk measurement methods depends on the quality of distributional assumptions on the underlying risk factors. This chapter is intended as a guide to heavy-tailed models for VaR-type calculations. We first describe stable laws and their lighter-tailed generalizations, the so-called truncated and tempered stable distributions. Next we study the class of generalized hyperbolic laws, which – like tempered stable distributions – can be classified somewhere between infinite variance stable laws and the Gaussian distribution. Then we discuss copulas, which enable us to construct a multivariate distribution function from the marginal (possibly different) distribution functions of n individual asset returns in a way that takes their dependence structure into account. This dependence structure may be no longer measured by correlation, but by other adequate functions like rank correlation, comonotonicity or tail dependence. Finally, we provide numerical examples.Heavy-tailed distribution; Stable distribution; Tempered stable distribution; Generalized hyperbolic distribution; Parameter estimation; Value-at-Risk (VaR); Expected Shortfall (ES); Copula; Filtered historical simulation (FHS);

    Generative Adversarial Networks in finance: an overview

    Get PDF
    Modelling in finance is a challenging task: the data often has complex statistical properties and its inner workings are largely unknown. Deep learning algorithms are making progress in the field of data-driven modelling, but the lack of sufficient data to train these models is currently holding back several new applications. Generative Adversarial Networks (GANs) are a neural network architecture family that has achieved good results in image generation and is being successfully applied to generate time series and other types of financial data. The purpose of this study is to present an overview of how these GANs work, their capabilities and limitations in the current state of research with financial data, and present some practical applications in the industry. As a proof of concept, three known GAN architectures were tested on financial time series, and the generated data was evaluated on its statistical properties, yielding solid results. Finally, it was shown that GANs have made considerable progress in their finance applications and can be a solid additional tool for data scientists in this field
    corecore