2,270 research outputs found

    Editorial: special issue on matching under preferences

    Get PDF
    This special issue of Algorithms is devoted to the study of matching problems involving ordinal preferences from the standpoint of algorithms and complexit

    Manipulation Strategies for the Rank Maximal Matching Problem

    Full text link
    We consider manipulation strategies for the rank-maximal matching problem. In the rank-maximal matching problem we are given a bipartite graph G=(AP,E)G = (A \cup P, E) such that AA denotes a set of applicants and PP a set of posts. Each applicant aAa \in A has a preference list over the set of his neighbours in GG, possibly involving ties. Preference lists are represented by ranks on the edges - an edge (a,p)(a,p) has rank ii, denoted as rank(a,p)=irank(a,p)=i, if post pp belongs to one of aa's ii-th choices. A rank-maximal matching is one in which the maximum number of applicants is matched to their rank one posts and subject to this condition, the maximum number of applicants is matched to their rank two posts, and so on. A rank-maximal matching can be computed in O(min(cn,n)m)O(\min(c \sqrt{n},n) m) time, where nn denotes the number of applicants, mm the number of edges and cc the maximum rank of an edge in an optimal solution. A central authority matches applicants to posts. It does so using one of the rank-maximal matchings. Since there may be more than one rank- maximal matching of GG, we assume that the central authority chooses any one of them randomly. Let a1a_1 be a manipulative applicant, who knows the preference lists of all the other applicants and wants to falsify his preference list so that he has a chance of getting better posts than if he were truthful. In the first problem addressed in this paper the manipulative applicant a1a_1 wants to ensure that he is never matched to any post worse than the most preferred among those of rank greater than one and obtainable when he is truthful. In the second problem the manipulator wants to construct such a preference list that the worst post he can become matched to by the central authority is best possible or in other words, a1a_1 wants to minimize the maximal rank of a post he can become matched to

    The Pareto Frontier for Random Mechanisms

    Full text link
    We study the trade-offs between strategyproofness and other desiderata, such as efficiency or fairness, that often arise in the design of random ordinal mechanisms. We use approximate strategyproofness to define manipulability, a measure to quantify the incentive properties of non-strategyproof mechanisms, and we introduce the deficit, a measure to quantify the performance of mechanisms with respect to another desideratum. When this desideratum is incompatible with strategyproofness, mechanisms that trade off manipulability and deficit optimally form the Pareto frontier. Our main contribution is a structural characterization of this Pareto frontier, and we present algorithms that exploit this structure to compute it. To illustrate its shape, we apply our results for two different desiderata, namely Plurality and Veto scoring, in settings with 3 alternatives and up to 18 agents.Comment: Working Pape

    07431 Abstracts Collection -- Computational Issues in Social Choice

    Get PDF
    From the 21st to the 26th of October 2007, the Dagstuhl Seminar 07431 on ``Computational Issues in Social Choice\u27\u27 was held at the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their recent research, and ongoing work and open problems were discussed. The abstracts of the talks given during the seminar are collected in this paper. The first section summarises the seminar topics and goals in general. Links to full papers are provided where available

    Fair Scheduling in Networks Through Packet Election

    Get PDF
    We consider the problem of designing a fair scheduling algorithm for discrete-time constrained queuing networks. Each queue has dedicated exogenous packet arrivals. There are constraints on which queues can be served simultaneously. This model effectively describes important special instances like network switches, interference in wireless networks, bandwidth sharing for congestion control and traffic scheduling in road roundabouts. Fair scheduling is required because it provides isolation to different traffic flows; isolation makes the system more robust and enables providing quality of service. Existing work on fairness for constrained networks concentrates on flow based fairness. As a main result, we describe a notion of packet based fairness by establishing an analogy with the ranked election problem: packets are voters, schedules are candidates and each packet ranks the schedules based on its priorities. We then obtain a scheduling algorithm that achieves the described notion of fairness by drawing upon the seminal work of Goodman and Markowitz (1952). This yields the familiar Maximum Weight (MW) style algorithm. As another important result we prove that algorithm obtained is throughput optimal. There is no reason a priori why this should be true, and the proof requires non-traditional methods.Comment: 14 pages (double column), submitted to IEEE Transactions on Information Theor

    Addressing stability issues in mediated complex contract negotiations for constraint-based, non-monotonic utility spaces

    Get PDF
    Negotiating contracts with multiple interdependent issues may yield non- monotonic, highly uncorrelated preference spaces for the participating agents. These scenarios are specially challenging because the complexity of the agents’ utility functions makes traditional negotiation mechanisms not applicable. There is a number of recent research lines addressing complex negotiations in uncorrelated utility spaces. However, most of them focus on overcoming the problems imposed by the complexity of the scenario, without analyzing the potential consequences of the strategic behavior of the negotiating agents in the models they propose. Analyzing the dynamics of the negotiation process when agents with different strategies interact is necessary to apply these models to real, competitive environments. Specially problematic are high price of anarchy situations, which imply that individual rationality drives the agents towards strategies which yield low individual and social welfares. In scenarios involving highly uncorrelated utility spaces, “low social welfare” usually means that the negotiations fail, and therefore high price of anarchy situations should be avoided in the negotiation mechanisms. In our previous work, we proposed an auction-based negotiation model designed for negotiations about complex contracts when highly uncorrelated, constraint-based utility spaces are involved. This paper performs a strategy analysis of this model, revealing that the approach raises stability concerns, leading to situations with a high (or even infinite) price of anarchy. In addition, a set of techniques to solve this problem are proposed, and an experimental evaluation is performed to validate the adequacy of the proposed approaches to improve the strategic stability of the negotiation process. Finally, incentive-compatibility of the model is studied.Spain. Ministerio de Educación y Ciencia (grant TIN2008-06739-C04-04
    corecore