480 research outputs found

    Stabilization of switched neural networks with time-varying delay via bumpless transfer control

    Get PDF
    This paper investigates the stabilization of switched neural networks with time-varying delay. In order to overcome the drawback that the classical switching state feedback controller may generate the bumps at switching time, a new switching feedback controller which can smooth effectively the bumps is proposed. According to mode-dependent average dwell time, new exponential stabilization results are deduced for switched neural networks under the proposed feedback controller. Based on a simple corollary, the procedures which are used to calculate the feedback control gain matrices are also obtained. Two simple numerical examples are employed to demonstrate the effectiveness of the proposed results.Peer reviewe

    Stabilization and Controller Design of 2D Discrete Switched Systems with State Delays under Asynchronous Switching

    Get PDF
    This paper is concerned with the problem of robust stabilization for a class of uncertain two-dimensional (2D) discrete switched systems with state delays under asynchronous switching. The asynchronous switching here means that the switching instants of the controller experience delays with respect to those of the system. The parameter uncertainties are assumed to be norm-bounded. A state feedback controller is proposed to guarantee the exponential stability. The dwell time approach is utilized for the stability analysis and controller design. A numerical example is given to illustrate the effectiveness of the proposed method

    Observer-Based Robust Tracking Control for a Class of Switched Nonlinear Cascade Systems

    Get PDF
    This paper is devoted to robust output feedback tracking control design for a class of switched nonlinear cascade systems. The main goal is to ensure the global input-to-state stable (ISS) property of the tracking error nonlinear dynamics with respect to the unknown structural system uncertainties and external disturbances. First, a nonlinear observer is constructed through state transformation to reconstruct the unavailable states, where only one parameter should be determined. Then, by virtue of the nonlinear sliding mode control (SMC), a discontinuous nonlinear output feedback controller is designed using a backstepping like design procedure to ensure the ISS property. Finally, an example is provided to show the effectiveness of the proposed approach

    Asynchronous H

    Get PDF
    This paper is devoted to the problem of asynchronous H∞ estimation for a class of two-dimensional (2D) nonhomogeneous Markovian jump systems with nonlocal sensor nonlinearity, where the nonlocal measurement nonlinearity is governed by a stochastic variable satisfying the Bernoulli distribution. The asynchronous estimation means that the switching of candidate filters may have a lag to the switching of system modes, and the varying character of transition probabilities is considered to reside in a convex polytope. The jumping process of the error system is modeled as a two-component Markov chain with extended varying transition probabilities. A stochastic parameter-dependent approach is provided for the design of H∞ filter such that, for randomly occurring nonlocal sensor nonlinearity, the corresponding error system is mean-square asymptotically stable and has a prescribed H∞ performance index. Finally, a numerical example is used to illustrate the effectiveness of the developed estimation method

    Quantized passive filtering for switched delayed neural networks

    Get PDF
    The issue of quantized passive filtering for switched delayed neural networks with noise interference is studied in this paper. Both arbitrary and semi-Markov switching rules are taken into account. By choosing Lyapunov functionals and applying several inequality techniques, sufficient conditions are proposed to ensure the filter error system to be not only exponentially stable, but also exponentially passive from the noise interference to the output error. The gain matrix for the proposed quantized passive filter is able to be determined through the feasible solution of linear matrix inequalities, which are computationally tractable with the help of some popular convex optimization tools. Finally, two numerical examples are given to illustrate the usefulness of the quantized passive filter design methods

    Dwell-time computation for stability of switched systems with time delays

    Get PDF
    Cataloged from PDF version of article.The aim of this study is to find an improved dwell time that guarantees the stability of switched systems with heterogeneous constant time-delays. Piecewise Lyapunov-Krasovkii functionals are used for each candidate system to investigate the stability of the switched time-delayed system. Under the assumption that each candidate system is stable for small delay values, a sufficient condition for dwell-time that guarantees the asymptotic stability is derived. Numerical examples are given to compare the results with the previously obtained dwell-time bounds. © The Institution of Engineering and Technology 2013

    Finite-time extended state observer and fractional-order sliding mode controller for impulsive hybrid port-Hamiltonian systems with input delay and actuators saturation: Application to ball-juggler robots

    Get PDF
    This paper addresses the robust control problem of mechanical systems with hybrid dynamics in port-Hamiltonian form. It is assumed that only the position states are measurable, and time-delay and saturation constraint affect the control signal. An extended state observer is designed after a coordinate transformation. The effect of the time delay in the control signal is neutralized by applying Pade ́ approximant and augmenting the system states. An assistant system with faster convergence is developed to handle actuators saturation. Fractional-order sliding mode controller acts as a centralized controller and compensates for the undesired effects of unknown external disturbance and parameter uncertainties using the observer estimation results. Stability analysis shows that the closed-loop system states, such as the observer tracking error, and the position/velocity tracking errors, are finite-time stable. Simulation studies on a two ball-playing juggler robot with three degrees of freedom validate the theoretical results’ effectiveness
    corecore