17 research outputs found

    Cooperative global optimal preview tracking control of linear multi-agent systems: an internal model approach

    Get PDF
    © 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This paper investigates the cooperative global optimal preview tracking problem of linear multi-agent systems under the assumption that the output of a leader is a previewable periodic signal and the topology graph contains a directed spanning tree. First, a type of distributed internal model is introduced, and the cooperative preview tracking problem is converted to a global optimal regulation problem of an augmented system. Second, an optimal controller, which can guarantee the asymptotic stability of the augmented system, is obtained by means of the standard linear quadratic optimal preview control theory. Third, on the basis of proving the existence conditions of the controller, sufficient conditions are given for the original problem to be solvable, meanwhile a cooperative global optimal controller with error integral and preview compensation is derived. Finally, the validity of theoretical results is demonstrated by a numerical simulation

    Stability analysis of a class of uncertain switched systems on time scale using Lyapunov functions

    Get PDF
    a b s t r a c t This paper deals with the stability analysis of a class of uncertain switched systems on nonuniform time domains. The considered class consists of dynamical systems which commute between an uncertain continuous-time subsystem and an uncertain discrete-time subsystem during a certain period of time. The theory of dynamic equations on time scale is used to study the stability of these systems on non-uniform time domains formed by a union of disjoint intervals with variable length and variable gap. Using the concept of common Lyapunov function, sufficient conditions are derived to guarantee the asymptotic stability of this class of systems on time scale with bounded graininess function. The proposed scheme is used to study the leader-follower consensus problem under intermittent information transmissions

    Non-fragile estimation for discrete-time T-S fuzzy systems with event-triggered protocol

    Get PDF
    summary:This paper investigates the non-fragile state estimation problem for a class of discrete-time T-S fuzzy systems with time-delays and multiple missing measurements under event-triggered mechanism. First of all, the plant is subject to the time-varying delays and the stochastic disturbances. Next, a random white sequence, the element of which obeys a general probabilistic distribution defined on [0,1][0,1], is utilized to formulate the occurrence of the missing measurements. Also, an event generator function is employed to regulate the transmission of data to save the precious energy. Then, a non-fragile state estimator is constructed to reflect the randomly occurring gain variations in the implementing process. By means of the Lyapunov-Krasovskii functional, the desired sufficient conditions are obtained such that the Takagi-Sugeno (T-S) fuzzy estimation error system is exponentially ultimately bounded in the mean square. And then the upper bound is minimized via the robust optimization technique and the estimator gain matrices can be calculated. Finally, a simulation example is utilized to demonstrate the effectiveness of the state estimation scheme proposed in this paper

    Structural engineering of evolving complex dynamical networks

    Get PDF
    Networks are ubiquitous in nature and many natural and man-made systems can be modelled as networked systems. Complex networks, systems comprising a number of nodes that are connected through edges, have been frequently used to model large-scale systems from various disciplines such as biology, ecology, and engineering. Dynamical systems interacting through a network may exhibit collective behaviours such as synchronisation, consensus, opinion formation, flocking and unusual phase transitions. Evolution of such collective behaviours is highly dependent on the structure of the interaction network. Optimisation of network topology to improve collective behaviours and network robustness can be achieved by intelligently modifying the network structure. Here, it is referred to as "Engineering of the Network". Although coupled dynamical systems can develop spontaneous synchronous patterns if their coupling strength lies in an appropriate range, in some applications one needs to control a fraction of nodes, known as driver nodes, in order to facilitate the synchrony. This thesis addresses the problem of identifying the set of best drivers, leading to the best pinning control performance. The eigen-ratio of the augmented Laplacian matrix, that is the largest eigenvalue divided by the second smallest one, is chosen as the controllability metric. The approach introduced in this thesis is to obtain the set of optimal drivers based on sensitivity analysis of the eigen-ratio, which requires only a single computation of the eigenvector associated with the largest eigenvalue, and thus is applicable for large-scale networks. This leads to a new "controllability centrality" metric for each subset of nodes. Simulation results reveal the effectiveness of the proposed metric in predicting the most important driver(s) correctly.     Interactions in complex networks might also facilitate the propagation of undesired effects, such as node/edge failure, which may crucially affect the performance of collective behaviours. In order to study the effect of node failure on network synchronisation, an analytical metric is proposed that measures the effect of a node removal on any desired eigenvalue of the Laplacian matrix. Using this metric, which is based on the local multiplicity of each eigenvalue at each node, one can approximate the impact of any node removal on the spectrum of a graph. The metric is computationally efficient as it only needs a single eigen-decomposition of the Laplacian matrix. It also provides a reliable approximation for the "Laplacian energy" of a network. Simulation results verify the accuracy of this metric in networks with different topologies. This thesis also considers formation control as an application of network synchronisation and studies the "rigidity maintenance" problem, which is one of the major challenges in this field. This problem is to preserve the rigidity of the sensing graph in a formation during motion, taking into consideration constraints such as line-of-sight requirements, sensing ranges and power limitations. By introducing a "Lattice of Configurations" for each node, a distributed rigidity maintenance algorithm is proposed to preserve the rigidity of the sensing network when failure in a sensing link would result in loss of rigidity. The proposed algorithm recovers rigidity by activating, almost always, the minimum number of new sensing links and considers real-time constraints of practical formations. A sufficient condition for this problem is proved and tested via numerical simulations. Based on the above results, a number of other areas and applications of network dynamics are studied and expounded upon in this thesis

    Game theoretic control of multi-agent systems: from centralised to distributed control

    Get PDF
    Differential game theory provides a framework to study the dynamic strategic interactions between multiple decisors, or players, each with an individual criterion to optimise. Noting the analogy between the concepts of "players'' and "agents'', it seems apparent that this framework is well-suited for control of multi-agent systems (MAS). Most of the existing results in the field of differential games assume that players have access to the full state of the system. This assumption, while holding reasonable in certain scenarios, does not apply in contexts where decisions are to be made by each individual agent based only on available local information. This poses a significant challenge in terms of the control design: distributed control laws, which take into account what information is available, are required. In the present work concepts borrowed from differential game theory and graph theory are exploited to formulate systematic frameworks for control of MAS, in a quest to shift the paradigm from centralised to distributed control. We introduce some preliminaries on differential game theory and graph theory, the latter for modeling communication constraints between the agents. Motivated by the difficulties associated with obtaining exact Nash equilibrium solutions for nonzero-sum differential games, we consider three approximate Nash equilibrium concepts and provide different characterisations of these in terms a class of static optimisation problems often encountered in control theory. Considering the multi-agent collision avoidance problem, we present a game theoretic approach, based on a (centralised) hybrid controller implementation of the control strategies, capable of ensuring collision-free trajectories and global convergence of the error system. We make a first step towards distributed control by introducing differential games with partial information, a framework for distributed control of MAS subject to local communication constraints, in which we assume that the agents share their control strategies with their neighbours. This assumption which, in the case of non-acyclic communication graphs, translates into the requirement of shared reasoning between groups of agents, is then relaxed through the introduction of a framework based on the concept of distributed differential games, i.e. a collection of multiple (fictitious) local differential games played by each individual agent in the MAS. Finally, we revisit the multi-agent collision avoidance problem in a distributed setting: considering time-varying communication graph topologies, which enable to model proximity-based communication constraints, we design differential games characterised by a Nash equilibrium solution which yields collision-free trajectories guaranteeing that all the agents reach their goal, provided no deadlocks occur. The efficacy of the game theoretic frameworks introduced in this thesis is demonstrated on several case studies of practical importance, related to robotic coordination and control of microgrids.Open Acces

    FeedNetBack - D03.02 - Control Subject to Transmission Constraints, With Transmission Errors

    Get PDF
    This is a Deliverable Report for the FeedNetBack project (www.feednetback.eu). It describes the research performed within Work Package 3, Task 3.2 (Control Subject to Transmission Constraints, with Transmission Errors), in the first 36 months of the project. It targets the issue of control subject to transmission constraints with transmission error. This research concerns problems arising from the presence of a noisy communication channel (specified and modeled at the physical layer) within the control loop. The resulting constraints include finite capacities in the transmission of the sensor and/or actuator signals and transmission errors. Our focus is on designing new compression and coding techniques to support networked control in this scenario. This Deliverable extends the analysis provided in the companion Deliverable D03.01, to deal with the effects of noise in communication channel. The quantization schemes described in D03.01, in particular the adaptive ones, might be very sensitive to the presence of even a few errors. Indeed error-correction coding for estimation or control purposes cannot simply exploit classical coding theory and practice, where vanishing error probability is obtained only in the limit of infinite block-length. A first contribution reported in this Deliverable is the construction of families of codes having the any-time property required in this setting, and the analysis of the trade-off between code complexity and performance. Our results consider the binary erasure channel, and can be extended to more general binary-input output-symmetric memoryless channels. The second and third contributions reported in this deliverable deal with the problem of remotely stabilizing linear time invariant (LTI) systems over Gaussian channels. Specifically, in the second contribution we consider a single LTI system which has to be stabilized by remote controller using a network of sensors having average transmit power constraints. We study basic sensor network topologies and provide necessary and sufficient conditions for mean square stabilization. Then in the third contribution, we extend our study to two LTI systems which are to be simultaneously stabilized. In this regard, we study the interesting setups of joint and separate sensing and control. By joint sensing we mean that there exists a common sensor node to simultaneously transmit the sensed state processes of the two plants and by joint control we mean that there is a common controller for both plants. We name these setups as: i) control over multiple-access channel (separate sensors, joint controller setup), ii) control over broadcast channel (common sensor, separate controllers setup), and iii) control over interference channel (separate sensors, separate controllers). We propose to use delay-free linear schemes for these setups and thus obtain sufficient conditions for mean square stabilization. Then, we discuss the joint design of the encoder and the controller. We propose an iterative design procedure for a joint design of the sensor measurement quantization, channel error protection, and controller actuation, with the objective to minimize the expected linear quadratic cost over a finite horizon. Finally, the same as for the noiseless case, we address the issues that arise when not only one plant and one controller are communicating through a channel, but there is a whole network of sensors and actuators. We consider the effects of digital noisy channels on the consensus algorithm, and we present an algorithm which exploits the any-time codes discussed above

    FeedNetBack - D03.01 - Control Subject to Transmission Constraints, No Transmission Errors

    Get PDF
    This is a Deliverable Report for the FeedNetBack project (www.feednetback.eu). It describes the research performed within Work Package 3, Task 3.1 (Control Subject to Transmission Constraints, no Transmission Errors), in the first 35 months of the project. It targets the issue of control subject to transmission constraints with no transmission error. This research concerns problems arising from the presence of a communication channel (specified and modeled at the physical layer) within the control loop. The resulting constraints include finite capacities in the transmission of the sensor and/or actuator signals. Our focus is on designing new quantization, compression and coding techniques to support networked control in this scenario. A first contribution of this report is a new adaptive differential coding algorithm for systems controlled through a digital noiseless channel with limited channel rate. The proposed technique results in global stability for noiseless MIMO systems, with a data-rate which is known to be the minimal required (as assessed by information-theoretical limits known in the literature as 'data-rate theorem'). With respect to existing algorithms, our scheme improves the transient behavior. A second line of research for the noiseless scenario has addressed the effect of limited data-rate in an algorithm running over a network. As a representative example, the consensus algorithm has been analyzed, and in particular its randomized version known as gossip algorithm. Static quantizers have been considered at first (both deterministic and probabilistic) and then the dynamic adaptive quantizers have been introduced also in this setting
    corecore