31,365 research outputs found

    Algorithms for outerplanar graph roots and graph roots of pathwidth at most 2

    Full text link
    Deciding whether a given graph has a square root is a classical problem that has been studied extensively both from graph theoretic and from algorithmic perspectives. The problem is NP-complete in general, and consequently substantial effort has been dedicated to deciding whether a given graph has a square root that belongs to a particular graph class. There are both polynomial-time solvable and NP-complete cases, depending on the graph class. We contribute with new results in this direction. Given an arbitrary input graph G, we give polynomial-time algorithms to decide whether G has an outerplanar square root, and whether G has a square root that is of pathwidth at most 2

    Square Gravity

    Full text link
    We simulate the Ising model on dynamical quadrangulations using a generalization of the flip move for triangulations with two aims: firstly, as a confirmation of the universality of the KPZ/DDK exponents of the Ising phase transition, worthwhile in view of some recent surprises with other sorts of dynamical lattices; secondly, to investigate the transition of the Ising antiferromagnet on a dynamical loosely packed (bipartite) lattice. In the latter case we show that it is still possible to define a staggered magnetization and observe the antiferromagnetic analogue of the transition.Comment: LaTeX file and 7 postscript figures bundled together with uufile

    Random Sierpinski network with scale-free small-world and modular structure

    Full text link
    In this paper, we define a stochastic Sierpinski gasket, on the basis of which we construct a network called random Sierpinski network (RSN). We investigate analytically or numerically the statistical characteristics of RSN. The obtained results reveal that the properties of RSN is particularly rich, it is simultaneously scale-free, small-world, uncorrelated, modular, and maximal planar. All obtained analytical predictions are successfully contrasted with extensive numerical simulations. Our network representation method could be applied to study the complexity of some real systems in biological and information fields.Comment: 7 pages, 9 figures; final version accepted for publication in EPJ

    Structural patterns in complex networks through spectral analysis

    Get PDF
    The study of some structural properties of networks is introduced from a graph spectral perspective. First, subgraph centrality of nodes is defined and used to classify essential proteins in a proteomic map. This index is then used to produce a method that allows the identification of superhomogeneous networks. At the same time this method classify non-homogeneous network into three universal classes of structure. We give examples of these classes from networks in different real-world scenarios. Finally, a communicability function is studied and showed as an alternative for defining communities in complex networks. Using this approach a community is unambiguously defined and an algorithm for its identification is proposed and exemplified in a real-world network

    Combinatorial approach to Modularity

    Full text link
    Communities are clusters of nodes with a higher than average density of internal connections. Their detection is of great relevance to better understand the structure and hierarchies present in a network. Modularity has become a standard tool in the area of community detection, providing at the same time a way to evaluate partitions and, by maximizing it, a method to find communities. In this work, we study the modularity from a combinatorial point of view. Our analysis (as the modularity definition) relies on the use of the configurational model, a technique that given a graph produces a series of randomized copies keeping the degree sequence invariant. We develop an approach that enumerates the null model partitions and can be used to calculate the probability distribution function of the modularity. Our theory allows for a deep inquiry of several interesting features characterizing modularity such as its resolution limit and the statistics of the partitions that maximize it. Additionally, the study of the probability of extremes of the modularity in the random graph partitions opens the way for a definition of the statistical significance of network partitions.Comment: 8 pages, 4 figure

    Opt: A Domain Specific Language for Non-linear Least Squares Optimization in Graphics and Imaging

    Full text link
    Many graphics and vision problems can be expressed as non-linear least squares optimizations of objective functions over visual data, such as images and meshes. The mathematical descriptions of these functions are extremely concise, but their implementation in real code is tedious, especially when optimized for real-time performance on modern GPUs in interactive applications. In this work, we propose a new language, Opt (available under http://optlang.org), for writing these objective functions over image- or graph-structured unknowns concisely and at a high level. Our compiler automatically transforms these specifications into state-of-the-art GPU solvers based on Gauss-Newton or Levenberg-Marquardt methods. Opt can generate different variations of the solver, so users can easily explore tradeoffs in numerical precision, matrix-free methods, and solver approaches. In our results, we implement a variety of real-world graphics and vision applications. Their energy functions are expressible in tens of lines of code, and produce highly-optimized GPU solver implementations. These solver have performance competitive with the best published hand-tuned, application-specific GPU solvers, and orders of magnitude beyond a general-purpose auto-generated solver
    corecore