386 research outputs found

    Investigations towards the development of a novel multimodal fibre optic sensor for oil and gas applications.

    Get PDF
    Oil and gas (O&G) explorations are moving into deeper zones of earth, causing serious safety concerns. Hence, sensing of critical multiple parameters like high pressure, high temperature (HPHT), chemicals, etc., are required at longer distances. Traditional electrical sensors operate less effectively under these extreme environmental conditions and are susceptible to electromagnetic interference (EMI). Compared to electrical sensors, fibre optic sensors offer several advantages like immunity to EMI, electrical isolation, ability to operate in harsh environmental conditions and freedom from corrosion. Existing fibre optical sensors in the O&G industry, based on step index single mode fibres (SMF), offer limited performance, as they operate within a narrow wavelength window. A novel multimodal sensor configuration, based on photonic crystal fibre (PCF) and utilising a multiwavelength approach, is proposed for the first time for O&G applications. This thesis reports computational and experimental investigations into the new multimodal sensing methodology, integrating both optical phase-change and spectral-change based approaches, needed for multi-parameter sensing. It includes investigations to improve the signal-to-noise ratio (SNR) by enhancing the signal intensity attained through structural, material and positional optimisations of the sensors. Waveguide related, computational investigations on PCF were carried out on different fibre optic core-cladding structures, material infiltrations and material doping to improve the signal intensity from the multimodal sensors for better SNR. COMSOL Multiphysics simulations indicated that structural and material modifications of the PCF have significant effects on light propagation characteristics. The propagation characteristics of the PCF were improved by modifying the geometrical parameters, and microstructuring the fibre core and cladding. Studies carried out on liquid crystal PCF (LCPCF) identified its enhanced mode confinement characteristics and wavelength tenability features (from visible to near infrared), which can be utilised for multi-wavelength applications. Enhancing core refractive index of the PCF improved the electric field confinements and thereby the signal intensity. Doping rare earth elements into the PCF core increases its refractive index and also provides additional spectroscopic features (photoluminescence and Raman), leading to a scope for multi-point, multimodal sensors. Investigations were carried out on PCF-FBG (Fibre Bragg grating) hybrid configuration, analysing their capabilities for optical phase-change based, multipoint, multi-parameter sensing. Computational investigations were carried out using MATLAB software, to study the effect of various fibre grating parameters. These studies helped in improving understanding of the FBG reflectivity-bandwidth characteristics, for tuning the number of sensors that can be accommodated within the same sensing fibre and enhancing the reflected signal for improved SNR. A new approach of FBG sensor positioning has been experimentally evaluated, to improve its strain sensitivity for structural health monitoring (SHM) of O&G structures. Further, experimental investigations were carried out on FBGs for sensing multiple parameters like temperature, strain (both tensile and compressive) and acoustic signals. Various spectroscopic investigations were carried out to identify the scope of rare earth doping within the PCF for photoluminescence and Raman spectroscopy based multimodal sensors. Rare earth doped glasses (Tb, Dy, Yb, Er, Ce and Ho) were developed using melt-quench approach and excitation- photoluminescence emission studies were carried out. The studies identified that photoluminescence signal intensity increases with rare earth concentration up to an optimum value and it can be further improved by tuning the excitation source characteristics. Photoluminescence based temperature studies were carried out using the rare earth doped glasses to identify their suitability for O&G high temperature conditions. Raman spectroscopic investigations were carried out on rare earth (Tb) doped glasses, developed using both melt-quench and sol-gel based approaches. Effect of 785 nm laser excitation on Raman signatures and suitability of rare earth doped materials for fibre-based Raman distributed temperature sensing (DTS) were also studied. Finally, a novel multimodal fibre optic sensor configuration is proposed for the O&G applications, consisting of rare earth doped photonic crystal fibre integrating Bragg gratings and operating in multiple wavelength regimes in a multiplexed fashion. The integrated sensor combination is expected to overcome the limitations of existing sensors with regards to SNR, sensing range and multimodal sensing capability

    Fabrication and integration of nanostructured optical devices

    Get PDF
    The main goal of this thesis is the numerical and experimental verification of the concept of nanostructured micro-optical elements integrated into an optical fibre. The elements are fabricated with a stack and draw technique. This technology, based on the wellknown method of photonic crystal fibres (PCFs) production, allows the fabrication of Nanostructured Gradient Index (nGRIN) microlenses and axicons with individual nanorods with diameter of 100-300nm. The necessary parameters of materials used in stack and draw method are described and two glasses are chosen for the nanostructured elements fabrication. The procedure of synthesis of clear and doped Poly(methyl methacrylate) (PMMA) is introduced, which will allow using PMMA in the future in stack and draw technique. Numerical simulations of a Gaussian beam focusing nGRIN microlenses attached to optical fibres are performed using a FFT BPM method. This shows that nGRIN microlenses can be described using the effective refractive index also in the case of the optical fibre illumination. The procedure of fabricating, cutting and polishing of elements 125 um in diameter and 20-60 um long is introduced and explained. Both simulation and experimental results show that the fabricated nanostructured lenses and axicons focus light for the fibre source with wavelength 1550nm

    Nanostructured Transition Metal Dichalcogenide Multilayers for Advanced Nanophotonics

    Get PDF
    Transition metal dichalcogenides (TMDs) attract significant attention due to their exceptional optical, excitonic, mechanical, and electronic properties. Nanostructured multilayer TMDs were recently shown to be highly promising for nanophotonic applications, as motivated by their exceptionally high refractive indices and optical anisotropy. Here, this vision is extended to more sophisticated structures, such as periodic arrays of nanodisks and nanoholes with ultra sharp walls, as well as proof-of-concept all-TMD waveguides and resonators. Specific focus is given to various advanced nanofabrication strategies, including careful selection of resists for electron beam lithography and etching methods, especially for non-conductiven but relevant for nanophotonic applications substrates, such as SiO2. The specific materials studied here include semiconducting WS2, in-plane anisotropic ReS2, and metallic TaSe2, TaS2, and NbSe2. The resulting nanostructures can potentially impact several nanophotonic and optoelectronic areas, including high-index nanophotonics, plasmonics and on-chip optical circuits. The knowledge of TMD material-dependent nanofabrication parameters developed here will help broaden the scope of future applications of all-TMD\ua0nanophotonics

    Programmable photonics : an opportunity for an accessible large-volume PIC ecosystem

    Get PDF
    We look at the opportunities presented by the new concepts of generic programmable photonic integrated circuits (PIC) to deploy photonics on a larger scale. Programmable PICs consist of waveguide meshes of tunable couplers and phase shifters that can be reconfigured in software to define diverse functions and arbitrary connectivity between the input and output ports. Off-the-shelf programmable PICs can dramatically shorten the development time and deployment costs of new photonic products, as they bypass the design-fabrication cycle of a custom PIC. These chips, which actually consist of an entire technology stack of photonics, electronics packaging and software, can potentially be manufactured cheaper and in larger volumes than application-specific PICs. We look into the technology requirements of these generic programmable PICs and discuss the economy of scale. Finally, we make a qualitative analysis of the possible application spaces where generic programmable PICs can play an enabling role, especially to companies who do not have an in-depth background in PIC technology

    Nanostructured composite materials based on carbon nanotubes and 3-D photonic crystals

    Get PDF
    Carbon nanotubes (CNT) and in particular, single-wall carbon nanotubes (SWCNT) have been extensively studied, in large part, due to their unique one-dimensional crystalline structures and related electronic and optical properties. Various polymeric composite materials, which were based on carbon nanotubes, have been also developed in an attempt to combine the properties of polymer and CNT in a single film. Such composites were mainly formed by mixing carbon nanotubes within the polymer without special emphasis on the structure and thereby, the nanoscopic properties of the resultant material. Photonic crystals belong to a class of man-made structures aimed at manipulating the propagation of electromagnetic waves at sub-wavelength dimensions in the visible range. The objective of this research work was to fabricate optical nano-composites from the bottom up: by incorporating carbon nanotubes within nano-structured templates we attempted to achieve novel composites with unique optical properties. Three-dimensional photonic crystals were made by self-assembly using monodisperse suspension of silicon dioxide colloids. Upon sedimentation, this highly ordered crystal, also known as opal, serves as a template for polymeric and polymer/CNT composites. For example, by infiltrating of the templates voids with a desired polymeric solution followed by etching of the silica template away, a three-dimensional inverse polymeric structure is obtained. Single-wall carbon nanotubes (SWCNT) have been directly grown into the template voids (in the range of 20 - 70 nm) by catalytic Chemical Vapor Deposition (CVD) technique with carbon monoxide as the carbon feedstock. The resultant SWCNTs were mostly semiconductive (p-doped). Control over the growth of SWCNT has been obtained by changing the catalyst concentration and the template\u27s void-size. Various techniques were used to characterize the SWCNT and its composites: Scanning Electron Microscope (SEM) has been used to identify the morphology of structures; interactions between polymer and nanotubes have been characterized by Raman spectroscopy; optical properties were studied by linear and nonlinear optical transmission and optical activity measurements; electrical properties were studied using thermoelectric and photoconductivity measurements. These data suggest that selforganized nano-scale templates are a promising route for realizing novel optical composite materials

    Advanced concepts and functionalities for symmetry-broken photonic bound states in the continuum

    Get PDF

    Tunable and Broadband Nanostructured Photonic Devices:Fabrication and Characterization

    Get PDF
    The main topic of this thesis is the fabrication and characterization of structures smaller than the wavelength of light, for operation in the visible or near infrared spectral range. In the first part of this thesis, the fabrication of periodic structures in one and two dimensions with an interference photolithography technique is described in detail. The structure periodicities that have been fabricated with this process ranges between 270 nm and a few microns on areas that can be as large as 100 cm2. Typical structure thicknesses are approximately equal to the period. In particular, a square lattice of pillars with a period of 270 nm has been created on the (non-flat) surface of a quartz microlens array and exhibits anti-reflective properties. Experimental results show a 15 % attenuation of the reflectivity and a 3 % enhancement of the transmissivity over the visible spectral range. In the second part of the thesis the structures are fabricated by e-beam lithography to ensure very precise devices shapes. The experimental results are obtained in the infrared range with two different structures, called photonic crystals. The first structure, a superprism, is a triangular lattice of pillars infiltrated by liquid crystals. A displacement of the output light spot is measured to be 20.5 µm for a wavelength variation of 27 nm. The structure length is 70 µm. The device, based on standard silicon technology, should allow integration of the device as a multiplexer/demultiplexer system into optical micro-circuits. The second structure, a tunable resonant cavity, is a wavelength filter working in the near infrared spectrum. The active area is composed of a photonic waveguide with a triangular lattice made of sub-micrometer holes. Additional nanostructuring in the light waveguide acts as a resonant cavity. The tunability of the device is obtained due to the liquid crystals which are infiltrated into the nanostructure. A 32 nm shift of the transmitted light peak inside the photonic band gap is measured by changing the temperature from room temperature to 45 °C

    Optical Sensors

    Get PDF
    This book is a compilation of works presenting recent developments and practical applications in optical sensor technology. It contains 10 chapters that encompass contributions from various individuals and research groups working in the area of optical sensing. It provides the reader with a broad overview and sampling of the innovative research on optical sensors in the world
    • …
    corecore