462 research outputs found

    On The Design Of Low-Complexity High-Speed Arithmetic Circuits In Quantum-Dot Cellular Automata Nanotechnology

    Get PDF
    For the last four decades, the implementation of very large-scale integrated systems has largely based on complementary metal-oxide semiconductor (CMOS) technology. However, this technology has reached its physical limitations. Emerging nanoscale technologies such as quantum-dot cellular automata (QCA), single electron tunneling (SET), and tunneling phase logic (TPL) are major candidate for possible replacements of CMOS. These nanotechnologies use majority and/or minority logic and inverters as circuit primitives. In this dissertation, a comprehensive methodology for majority/minority logic networks synthesis is developed. This method is capable of processing any arbitrary multi-output Boolean function to nd its equivalent optimal majority logic network targeting to optimize either the number of gates or levels. The proposed method results in different primary equivalent majority expression networks. However, the most optimized network will be generated as a nal solution. The obtained results for 15 MCNC benchmark circuits show that when the number of majority gates is the rst optimization priority, there is an average reduction of 45.3% in the number of gates and 15.1% in the number of levels. They also show that when the rst priority is the number of levels, an average reduction of 23.5% in the number of levels and 43.1% in the number of gates is possible, compared to the majority AND/OR mapping method. These results are better compared to those obtained from the best existing methods. In this dissertation, our approach is to exploit QCA technology because of its capability to implement high-density, very high-speed switching and tremendously lowpower integrated systems and is more amenable to digital circuits design. In particular, we have developed algorithms for the QCA designs of various single- and multi-operation arithmetic arrays. Even though, majority/minority logic are the basic units in promising nanotechnologies, an XOR function can be constructed in QCA as a single device. The basic cells of the proposed arrays are developed based on the fundamental logic devices in QCA and a single-layer structure of the three-input XOR function. This process leads to QCA arithmetic circuits with better results in view of dierent aspects such as cell count, area, and latency, compared to their best counterparts. The proposed arrays can be formed in a pipeline manner to perform the arithmetic operations for any number of bits which could be quite valuable while considering the future design of large-scale QCA circuits

    HIGH PERFORMANCE, LOW COST SUBSPACE DECOMPOSITION AND POLYNOMIAL ROOTING FOR REAL TIME DIRECTION OF ARRIVAL ESTIMATION: ANALYSIS AND IMPLEMENTATION

    Get PDF
    This thesis develops high performance real-time signal processing modules for direction of arrival (DOA) estimation for localization systems. It proposes highly parallel algorithms for performing subspace decomposition and polynomial rooting, which are otherwise traditionally implemented using sequential algorithms. The proposed algorithms address the emerging need for real-time localization for a wide range of applications. As the antenna array size increases, the complexity of signal processing algorithms increases, making it increasingly difficult to satisfy the real-time constraints. This thesis addresses real-time implementation by proposing parallel algorithms, that maintain considerable improvement over traditional algorithms, especially for systems with larger number of antenna array elements. Singular value decomposition (SVD) and polynomial rooting are two computationally complex steps and act as the bottleneck to achieving real-time performance. The proposed algorithms are suitable for implementation on field programmable gated arrays (FPGAs), single instruction multiple data (SIMD) hardware or application specific integrated chips (ASICs), which offer large number of processing elements that can be exploited for parallel processing. The designs proposed in this thesis are modular, easily expandable and easy to implement. Firstly, this thesis proposes a fast converging SVD algorithm. The proposed method reduces the number of iterations it takes to converge to correct singular values, thus achieving closer to real-time performance. A general algorithm and a modular system design are provided making it easy for designers to replicate and extend the design to larger matrix sizes. Moreover, the method is highly parallel, which can be exploited in various hardware platforms mentioned earlier. A fixed point implementation of proposed SVD algorithm is presented. The FPGA design is pipelined to the maximum extent to increase the maximum achievable frequency of operation. The system was developed with the objective of achieving high throughput. Various modern cores available in FPGAs were used to maximize the performance and details of these modules are presented in detail. Finally, a parallel polynomial rooting technique based on Newton’s method applicable exclusively to root-MUSIC polynomials is proposed. Unique characteristics of root-MUSIC polynomial’s complex dynamics were exploited to derive this polynomial rooting method. The technique exhibits parallelism and converges to the desired root within fixed number of iterations, making this suitable for polynomial rooting of large degree polynomials. We believe this is the first time that complex dynamics of root-MUSIC polynomial were analyzed to propose an algorithm. In all, the thesis addresses two major bottlenecks in a direction of arrival estimation system, by providing simple, high throughput, parallel algorithms

    Efficient digital implementation of a multi-precision square-root algorithm

    Get PDF

    Noise Cancellation in Cognitive Radio Systems: A Performance Comparison of Evolutionary Algorithms

    Full text link
    Noise cancellation is one of the important signal processing functions of any communication system, as noise affects data integrity. In existing systems, traditional filters are used to cancel the noise from the received signals. These filters use fixed hardware which is capable of filtering specific frequency or a range of frequencies. However, next generation communication technologies, such as cognitive radio, will require the use of adaptive filters that can dynamically reconfigure their filtering parameters for any frequency. To this end, a few noise cancellation techniques have been proposed, including least mean squares (LMS) and its variants. However, these algorithms are susceptible to non-linear noise and fail to locate the global optimum solution for de-noising. In this paper, we investigate the efficiency of two global search optimization based algorithms, genetic algorithm and particle swarm optimization in performing noise cancellation in cognitive radio systems. These algorithms are implemented and their performances are compared to that of LMS using bit error rate and mean square error as performance evaluation metrics. Simulations are performed with additive white Gaussian noise and random nonlinear noise. Results indicate that GA and PSO perform better than LMS for the case of AWGN corrupted signal but for non-linear random noise PSO outperforms the other two algorithms

    Novel arithmetic implementations using cellular neural network arrays.

    Get PDF
    The primary goal of this research is to explore the use of arrays of analog self-synchronized cells---the cellular neural network (CNN) paradigm---in the implementation of novel digital arithmetic architectures. In exploring this paradigm we also discover that the implementation of these CNN arrays produces very low system noise; that is, noise generated by the rapid switching of current through power supply die connections---so called di/dt noise. With the migration to sub 100 nanometer process technology, signal integrity is becoming a critical issue when integrating analog and digital components onto the same chip, and so the CNN architectural paradigm offers a potential solution to this problem. A typical example is the replacement of conventional digital circuitry adjacent to sensitive bio-sensors in a SoC Bio-Platform. The focus of this research is therefore to discover novel approaches to building low-noise digital arithmetic circuits using analog cellular neural networks, essentially implementing asynchronous digital logic but with the same circuit components as used in analog circuit design. We address our exploration by first improving upon previous research into CNN binary arithmetic arrays. The second phase of our research introduces a logical extension of the binary arithmetic method to implement binary signed-digit (BSD) arithmetic. To this end, a new class of CNNs that has three stable states is introduced, and is used to implement arithmetic circuits that use binary inputs and outputs but internally uses the BSD number representation. Finally, we develop CNN arrays for a 2-dimensional number representation (the Double-base Number System - DBNS). A novel adder architecture is described in detail, that performs the addition as well as reducing the representation for further processing; the design incorporates an innovative self-programmable array. Extensive simulations have shown that our new architectures can reduce system noise by almost 70dB and crosstalk by more than 23dB over standard digital implementations.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .I27. Source: Dissertation Abstracts International, Volume: 66-11, Section: B, page: 6159. Thesis (Ph.D.)--University of Windsor (Canada), 2005
    • …
    corecore