97,434 research outputs found

    Move ordering and communities in complex networks describing the game of go

    Full text link
    We analyze the game of go from the point of view of complex networks. We construct three different directed networks of increasing complexity, defining nodes as local patterns on plaquettes of increasing sizes, and links as actual successions of these patterns in databases of real games. We discuss the peculiarities of these networks compared to other types of networks. We explore the ranking vectors and community structure of the networks and show that this approach enables to extract groups of moves with common strategic properties. We also investigate different networks built from games with players of different levels or from different phases of the game. We discuss how the study of the community structure of these networks may help to improve the computer simulations of the game. More generally, we believe such studies may help to improve the understanding of human decision process.Comment: 14 pages, 21 figure

    Microscopic mechanism for the 1/8 magnetization plateau in SrCu_2(BO_3)_2

    Full text link
    The frustrated quantum magnet SrCu_2(BO_3)_2 shows a remarkably rich phase diagram in an external magnetic field including a sequence of magnetization plateaux. The by far experimentally most studied and most prominent magnetization plateau is the 1/8 plateau. Theoretically, one expects that this material is well described by the Shastry-Sutherland model. But recent microscopic calculations indicate that the 1/8 plateau is energetically not favored. Here we report on a very simple microscopic mechanism which naturally leads to a 1/8 plateau for realistic values of the magnetic exchange constants. We show that the 1/8 plateau with a diamond unit cell benefits most compared to other plateau structures from quantum fluctuations which to a large part are induced by Dzyaloshinskii-Moriya interactions. Physically, such couplings result in kinetic terms in an effective hardcore boson description leading to a renormalization of the energy of the different plateaux structures which we treat in this work on the mean-field level. The stability of the resulting plateaux are discussed. Furthermore, our results indicate a series of stripe structures above 1/8 and a stable magnetization plateau at 1/6. Most qualitative aspects of our microscopic theory agree well with a recently formulated phenomenological theory for the experimental data of SrCu_2(BO_3)_2. Interestingly, our calculations point to a rather large ratio of the magnetic couplings in the Shastry-Sutherland model such that non-perturbative effects become essential for the understanding of the frustrated quantum magnet SrCu_2(BO_3)_2.Comment: 24 pages, 24 figure

    Learning physical descriptors for materials science by compressed sensing

    Get PDF
    The availability of big data in materials science offers new routes for analyzing materials properties and functions and achieving scientific understanding. Finding structure in these data that is not directly visible by standard tools and exploitation of the scientific information requires new and dedicated methodology based on approaches from statistical learning, compressed sensing, and other recent methods from applied mathematics, computer science, statistics, signal processing, and information science. In this paper, we explain and demonstrate a compressed-sensing based methodology for feature selection, specifically for discovering physical descriptors, i.e., physical parameters that describe the material and its properties of interest, and associated equations that explicitly and quantitatively describe those relevant properties. As showcase application and proof of concept, we describe how to build a physical model for the quantitative prediction of the crystal structure of binary compound semiconductors

    Scalable Focused Ion Beam Creation of Nearly Lifetime-Limited Single Quantum Emitters in Diamond Nanostructures

    Get PDF
    The controlled creation of defect center---nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here, we demonstrate direct, maskless creation of atom-like single silicon-vacancy (SiV) centers in diamond nanostructures via focused ion beam implantation with 32\sim 32 nm lateral precision and <50< 50 nm positioning accuracy relative to a nanocavity. Moreover, we determine the Si+ ion to SiV center conversion yield to 2.5%\sim 2.5\% and observe a 10-fold conversion yield increase by additional electron irradiation. We extract inhomogeneously broadened ensemble emission linewidths of 51\sim 51 GHz, and close to lifetime-limited single-emitter transition linewidths down to 126±13126 \pm13 MHz corresponding to 1.4\sim 1.4-times the natural linewidth. This demonstration of deterministic creation of optically coherent solid-state single quantum systems is an important step towards development of scalable quantum optical devices

    Applications of Graphical Condensation for Enumerating Matchings and Tilings

    Get PDF
    A technique called graphical condensation is used to prove various combinatorial identities among numbers of (perfect) matchings of planar bipartite graphs and tilings of regions. Graphical condensation involves superimposing matchings of a graph onto matchings of a smaller subgraph, and then re-partitioning the united matching (actually a multigraph) into matchings of two other subgraphs, in one of two possible ways. This technique can be used to enumerate perfect matchings of a wide variety of bipartite planar graphs. Applications include domino tilings of Aztec diamonds and rectangles, diabolo tilings of fortresses, plane partitions, and transpose complement plane partitions.Comment: 25 pages; 21 figures Corrected typos; Updated references; Some text revised, but content essentially the sam

    Mesoscopic Wigner crystallization in two dimensional lattice models

    Full text link
    The quantum-classical crossover from the Fermi liquid towards the Wigner solid is numerically revisited, considering small square lattice models where electrons interact via a Coulomb U/rU/r potential. The studies of models without disorder and spin and including disorder and spin show that the electron solid is formed in two stages, giving rise to an intriguing solid-liquid regime at intermediate couplingsComment: To appear in the proceedings of the XXXVIth Rencontres de Moriond edited by T. Martin and G. Montambau

    Universal properties of highly frustrated quantum magnets in strong magnetic fields

    Get PDF
    The purpose of the present paper is two-fold. On the one hand, we review some recent studies on the low-temperature strong-field thermodynamic properties of frustrated quantum spin antiferromagnets which admit the so-called localized-magnon eigenstates. One the other hand, we provide some complementary new results. We focus on the linear independence of the localized-magnon states, the estimation of their degeneracy with the help of auxiliary classical lattice-gas models and the analysis of the contribution of these states to thermodynamics.Comment: Paper based on the invited talk given by J. Richter at the International Conference "Statistical Physics 2006. Condensed Matter: Theory and Applications" dedicated to the 90th anniversary of Ilya Lifshitz (Kharkiv, 11-15 September, 2006

    Structural trends in clusters of quadrupolar spheres

    Full text link
    The influence of quadrupolar interactions on the structure of small clusters is investigated by adding a point quadrupole of variable strength to the Lennard-Jones potential. Competition arises between sheet-like arrangements of the particles, favoured by the quadrupoles, and compact structures, favoured by the isotropic Lennard-Jones attraction. Putative global potential energy minima are obtained for clusters of up to 25 particles using the basin-hopping algorithm. A number of structural motifs and growth sequences emerge, including star-like structures, tubes, shells and sheets. The results are discussed in the context of colloidal self-assembly.Comment: 8 pages, 6 figure

    Who witnesses The Witness? Finding witnesses in The Witness is hard and sometimes impossible

    Full text link
    We analyze the computational complexity of the many types of pencil-and-paper-style puzzles featured in the 2016 puzzle video game The Witness. In all puzzles, the goal is to draw a simple path in a rectangular grid graph from a start vertex to a destination vertex. The different puzzle types place different constraints on the path: preventing some edges from being visited (broken edges); forcing some edges or vertices to be visited (hexagons); forcing some cells to have certain numbers of incident path edges (triangles); or forcing the regions formed by the path to be partially monochromatic (squares), have exactly two special cells (stars), or be singly covered by given shapes (polyominoes) and/or negatively counting shapes (antipolyominoes). We show that any one of these clue types (except the first) is enough to make path finding NP-complete ("witnesses exist but are hard to find"), even for rectangular boards. Furthermore, we show that a final clue type (antibody), which necessarily "cancels" the effect of another clue in the same region, makes path finding Σ2\Sigma_2-complete ("witnesses do not exist"), even with a single antibody (combined with many anti/polyominoes), and the problem gets no harder with many antibodies. On the positive side, we give a polynomial-time algorithm for monomino clues, by reducing to hexagon clues on the boundary of the puzzle, even in the presence of broken edges, and solving "subset Hamiltonian path" for terminals on the boundary of an embedded planar graph in polynomial time.Comment: 72 pages, 59 figures. Revised proof of Lemma 3.5. A short version of this paper appeared at the 9th International Conference on Fun with Algorithms (FUN 2018
    corecore