41 research outputs found

    Matrix methods for Pad\'e approximation: numerical calculation of poles, zeros and residues

    Full text link
    A representation of the Pad\'e approximation of the ZZ-transform of a signal as a resolvent of a tridiagonal matrix JJ is given. Several formulas for the poles, zeros and residues of the Pad\'e approximation in terms of the matrix JJ are proposed. Their numerical stability is tested and compared. Methods for computing forward and backward errors are presented

    TR-2012001: Algebraic Algorithms

    Full text link

    TR-2013009: Algebraic Algorithms

    Full text link

    Improved algorithms for computing determinants and resultants

    Get PDF
    AbstractOur first contribution is a substantial acceleration of randomized computation of scalar, univariate, and multivariate matrix determinants, in terms of the output-sensitive bit operation complexity bounds, including computation modulo a product of random primes from a fixed range. This acceleration is dramatic in a critical application, namely solving polynomial systems and related studies, via computing the resultant. This is achieved by combining our techniques with the primitive-element method, which leads to an effective implicit representation of the roots. We systematically examine quotient formulae of Sylvester-type resultant matrices, including matrix polynomials and the u-resultant. We reduce the known bit operation complexity bounds by almost an order of magnitude, in terms of the resultant matrix dimension. Our theoretical and practical improvements cover the highly important cases of sparse and degenerate systems

    TR-2008003: Unified Nearly Optimal Algorithms for Structured Integer Matrices and Polynomials

    Full text link
    We seek the solution of banded, Toeplitz, Hankel, Vandermonde, Cauchy and other structured linear systems of equations with integer coefficients. By combining Hensel’s symbolic lifting with either divide-and-conquer algorithms or numerical iterative refinement, we unify the solution for all these structures. We yield the solution in nearly optimal randomized Boolean time, which covers both solution and its correctness verification. Our algorithms and nearly optimal time bounds are extended to the computation of the determinant of a structured integer matrix, its rank and a basis for its null space as well as to some fundamental computations with univariate polynomials that have integer coefficients. Furthermore, we allow to perform lifting modulo a properly bounded power of two t

    Sublinear Root Detection and New Hardness Results for Sparse Polynomials over Finite Fields

    Get PDF

    Harnessing the power of GPUs for problems in real algebraic geometry

    Get PDF
    This thesis presents novel parallel algorithms to leverage the power of GPUs (Graphics Processing Units) for exact computations with polynomials having large integer coefficients. The significance of such computations, especially in real algebraic geometry, is hard to undermine. On massively-parallel architectures such as GPU, the degree of datalevel parallelism exposed by an algorithm is the main performance factor. We attain high efficiency through the use of structured matrix theory to assist the realization of relevant operations on polynomials on the graphics hardware. A detailed complexity analysis, assuming the PRAM model, also confirms that our approach achieves a substantially better parallel complexity in comparison to classical algorithms used for symbolic computations. Aside from the theoretical considerations, a large portion of this work is dedicated to the actual algorithm development and optimization techniques where we pay close attention to the specifics of the graphics hardware. As a byproduct of this work, we have developed high-throughput modular arithmetic which we expect to be useful for other GPU applications, in particular, open-key cryptography. We further discuss the algorithms for the solution of a system of polynomial equations, topology computation of algebraic curves and curve visualization which can profit to the full extent from the GPU acceleration. Extensive benchmarking on a real data demonstrates the superiority of our algorithms over several state-of-the-art approaches available to date. This thesis is written in English.Diese Arbeit beschäftigt sich mit neuen parallelen Algorithmen, die das Leistungspotenzial der Grafik-Prozessoren (GPUs) zur exakten Berechnungen mit ganzzahlige Polynomen nutzen. Solche symbolische Berechnungen sind von großer Bedeutung zur Lösung vieler Probleme aus der reellen algebraischen Geometrie. Für die effziente Implementierung eines Algorithmus auf massiv-parallelen Hardwarearchitekturen, wie z.B. GPU, ist vor allem auf eine hohe Datenparallelität zu achten. Unter Verwendung von Ergebnissen aus der strukturierten Matrix-Theorie konnten wir die entsprechenden Operationen mit Polynomen auf der Grafikkarte leicht übertragen. Außerdem zeigt eine Komplexitätanalyse im PRAM-Rechenmodell, dass die von uns entwickelten Verfahren eine deutlich bessere Komplexität aufweisen als dies für die klassischen Verfahren der Fall ist. Neben dem theoretischen Ergebnis liegt ein weiterer Schwerpunkt dieser Arbeit in der praktischen Implementierung der betrachteten Algorithmen, wobei wir auf der Besonderheiten der Grafikhardware achten. Im Rahmen dieser Arbeit haben wir hocheffiziente modulare Arithmetik entwickelt, von der wir erwarten, dass sie sich für andere GPU Anwendungen, insbesondere der Public-Key-Kryptographie, als nützlich erweisen wird. Darüber hinaus betrachten wir Algorithmen für die Lösung eines Systems von Polynomgleichungen, Topologie Berechnung der algebraischen Kurven und deren Visualisierung welche in vollem Umfang von der GPU-Leistung profitieren können. Zahlreiche Experimente belegen dass wir zur Zeit die beste Verfahren zur Verfügung stellen. Diese Dissertation ist in englischer Sprache verfasst

    Author index to volumes 301–400

    Get PDF
    corecore