2,783 research outputs found

    A Signal Normalization Technique for Illumination-Based Synchronization of 1,000-fps Real-Time Vision Sensors in Dynamic Scenes

    Get PDF
    To acquire images of dynamic scenes from multiple points of view simultaneously, the acquisition time of vision sensors should be synchronized. In this paper, an illumination-based synchronization derived from the phase-locked loop (PLL) mechanism based on the signal normalization method is proposed and evaluated. To eliminate the system dependency due to the amplitude fluctuation of the reference illumination, which may be caused by the moving objects or relative positional distance change between the light source and the observed objects, the fluctuant amplitude of the reference signal is normalized framely by the estimated maximum amplitude between the reference signal and its quadrature counterpart to generate a stable synchronization in highly dynamic scenes. Both simulated results and real world experimental results demonstrated successful synchronization result that 1,000-Hz frame rate vision sensors can be successfully synchronized to a LED illumination or its reflected light with satisfactory stability and only 28-μs jitters

    Undersampled-Based Modulation Schemes for Optical Camera Communications

    Get PDF
    Widespread use of white light-emitting diodes and ubiquitous smart devices offer the opportunity to establish VLC, which has become a hot research topic based on the growing number of publications over the last decade. Camera-based VLC, namely OCC, provides many unique features when compared to a single-photodiode-based system, such as the ability to separate incident light in the spatial and color domains. OCC technology represents a promising approach to utilize the benefits of VLC in beyond-5G scenarios and is one of the key technologies of the Internet of Things. Establishing a long communication channel in OCC, as well as non-flickering illumination by using low-frame-rate camera detectors, requires special modulation schemes. This article provides an overview of the principles of three categories of modulation schemes for OCC systems using a low-frame-rate camera detector. In addition, a series of undersampled modulation schemes are proposed and discussed to achieve flicker-free OCC with higher spectral efficiency. In addition, framing structures are designed to solve problems occurring in OCC systems using particular modulation schemes. To evaluate the performance of these modulation schemes, measured bit error rate values are shown. Finally, challenges in the implementation of OCC systems are also outlined

    High Performance Optical Transmitter Ffr Next Generation Supercomputing and Data Communication

    Get PDF
    High speed optical interconnects consuming low power at affordable prices are always a major area of research focus. For the backbone network infrastructure, the need for more bandwidth driven by streaming video and other data intensive applications such as cloud computing has been steadily pushing the link speed to the 40Gb/s and 100Gb/s domain. However, high power consumption, low link density and high cost seriously prevent traditional optical transceiver from being the next generation of optical link technology. For short reach communications, such as interconnects in supercomputers, the issues related to the existing electrical links become a major bottleneck for the next generation of High Performance Computing (HPC). Both applications are seeking for an innovative solution of optical links to tackle those current issues. In order to target the next generation of supercomputers and data communication, we propose to develop a high performance optical transmitter by utilizing CISCO Systems®\u27s proprietary CMOS photonic technology. The research seeks to achieve the following outcomes: 1. Reduction of power consumption due to optical interconnects to less than 5pJ/bit without the need for Ring Resonators or DWDM and less than 300fJ/bit for short distance data bus applications. 2. Enable the increase in performance (computing speed) from Peta-Flop to Exa-Flops without the proportional increase in cost or power consumption that would be prohibitive to next generation system architectures by means of increasing the maximum data transmission rate over a single fiber. 3. Explore advanced modulation schemes such as PAM-16 (Pulse-Amplitude-Modulation with 16 levels) to increase the spectrum efficiency while keeping the same or less power figure. This research will focus on the improvement of both the electrical IC and optical IC for the optical transmitter. An accurate circuit model of the optical device is created to speed up the performance optimization and enable co-simulation of electrical driver. Circuit architectures are chosen to minimize the power consumption without sacrificing the speed and noise immunity. As a result, a silicon photonic based optical transmitter employing 1V supply, featuring 20Gb/s data rate is fabricated. The system consists of an electrical driver in 40nm CMOS and an optical MZI modulator with an RF length of less than 0.5mm in 0.13&mu m SOI CMOS. Two modulation schemes are successfully demonstrated: On-Off Keying (OOK) and Pulse-Amplitude-Modulation-N (PAM-N N=4, 16). Both versions demonstrate signal integrity, interface density, and scalability that fit into the next generation data communication and exa-scale computing. Modulation power at 20Gb/s data rate for OOK and PAM-16 of 4pJ/bit and 0.25pJ/bit are achieved for the first time of an MZI type optical modulator, respectively

    A synchronised Direct Digital Synthesiser

    Get PDF
    We describe a Direct Digital Synthesiser (DDS) which provides three frequency-locked synchronised outputs to generate frequencies from DC to 160 MHz. Primarily designed for use in a heterodyning range imaging system, the flexibility of the design allows its use in a number of other applications which require any number of stable, synchronised high frequency outputs. Frequency tuning of 32 bit length provides 0.1 Hz resolution when operating at the maximum clock rate of 400 MSPS, while 14 bit phase tuning provides 0.4 mrad resolution. The DDS technique provides very high relative accuracy between outputs, while the onboard oscillator’s stability of ±1 ppm adds absolute accuracy to the design

    Color television study Final report, Nov. 1965 - Mar. 1966

    Get PDF
    Color television camera for transmission from lunar and earth orbits and lunar surfac

    Determination of optical technology experiments for a satellite

    Get PDF
    Optical technology experiments for satellite - communications, acquisition, tracking, lasers, photometry, and atmospheric
    corecore