46 research outputs found

    RF MEMS reference oscillators platform for wireless communications

    Get PDF
    A complete platform for RF MEMS reference oscillator is built to replace bulky quartz from mobile devices, thus reducing size and cost. The design targets LTE transceivers. A low phase noise 76.8 MHz reference oscillator is designed using material temperature compensated AlN-on-silicon resonator. The thesis proposes a system combining piezoelectric resonator with low loading CMOS cross coupled series resonance oscillator to reach state-of-the-art LTE phase noise specifications. The designed resonator is a two port fundamental width extensional mode resonator. The resonator characterized by high unloaded quality factor in vacuum is designed with low temperature coefficient of frequency (TCF) using as compensation material which enhances the TCF from - 3000 ppm to 105 ppm across temperature ranges of -40˚C to 85˚C. By using a series resonant CMOS oscillator, phase noise of -123 dBc/Hz at 1 kHz, and -162 dBc/Hz at 1MHz offset is achieved. The oscillator’s integrated RMS jitter is 106 fs (10 kHz–20 MHz), consuming 850 μA, with startup time is 250μs, achieving a Figure-of-merit (FOM) of 216 dB. Electronic frequency compensation is presented to further enhance the frequency stability of the oscillator. Initial frequency offset of 8000 ppm and temperature drift errors are combined and further addressed electronically. A simple digital compensation circuitry generates a compensation word as an input to 21 bit MASH 1 -1-1 sigma delta modulator incorporated in RF LTE fractional N-PLL for frequency compensation. Temperature is sensed using low power BJT band-gap front end circuitry with 12 bit temperature to digital converter characterized by a resolution of 0.075˚C. The smart temperature sensor consumes only 4.6 μA. 700 MHz band LTE signal proved to have the stringent phase noise and frequency resolution specifications among all LTE bands. For this band, the achieved jitter value is 1.29 ps and the output frequency stability is 0.5 ppm over temperature ranges from -40˚C to 85˚C. The system is built on 32nm CMOS technology using 1.8V IO device

    A High-Linearity Digital-to-Time Converter Technique: Constant-Slope Charging

    Full text link

    Techniques for Frequency Synthesizer-Based Transmitters.

    Full text link
    Internet of Things (IoT) devices are poised to be the largest market for the semiconductor industry. At the heart of a wireless IoT module is the radio and integral to any radio is the transmitter. Transmitters with low power consumption and small area are crucial to the ubiquity of IoT devices. The fairly simple modulation schemes used in IoT systems makes frequency synthesizer-based (also known as PLL-based) transmitters an ideal candidate for these devices. Because of the reduced number of analog blocks and the simple architecture, PLL-based transmitters lend themselves nicely to the highly integrated, low voltage nanometer digital CMOS processes of today. This thesis outlines techniques that not only reduce the power consumption and area, but also significantly improve the performance of PLL-based transmitters.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113385/1/mammad_1.pd

    다이렉트 경로를 이용한 5/8GHz 듀얼 모드 All-Digital Phase-Locked Loop의 설계

    Get PDF
    학위논문 (석사)-- 서울대학교 대학원 : 공과대학 전기·정보공학부, 2019. 2. 정덕균.최근 데이터의 전송 속도가 비약적으로 증가함에 따라 데이터 처리 방식이 다양하게 연구되었고 여러 방식에 따른 고속의 송수신기 설계가 중요시되고 있다. 그 중에서도 Clock 신호를 합성하는 역할인 Phase-Locked Loop (PLL)에 대한 연구가 활발히 진행되고 있다. 특히 패시브 소자를 Loop Filter에 사용해야 하는 Analog PLL보다는 PVT 변화에 둔감하고 Programmable 하다는 장점을 가진 All Digital PLL (AD-PLL)에 대한 관심도가 높아지고 있다. 본 논문에서는 Peripheral Component Interconnect Express Memory interface (PCIe) 지원을 위한 32Gbps Serial Link에 Common Clock 신호를 제공하는 5/8 GHz 듀얼 모드 AD-PLL을 제안한다. 이전 세대와의 호환성을 위해 넓은 동작 영역을 갖고 모드 선택이 가능한 듀얼 모드 Digitally Controlled Oscillator (DCO)를 사용하였고 설계 전 Digital 방식으로 변환함에 따라 발생하는 Quantization Noise에 대해 분석하고 Matlab, Verilog Behavioral Simulation을 통해 출력의 Phase Noise와 RMS Jitter 값을 예측해 볼 수 있었다. 또한 Reference Clock의 한 주기 이내에 정보가 Update되지 못하는 Loop Delay의 문제를 해결하기 위해 Digital Loop Filter (DLF)의 처리 과정을 거치지 않고 Time to Digital Converter (TDC)의 출력을 DCO에 바로 전달해 줄 수 있는 다이렉트 경로를 제안하였다. 설계된 회로는 TSMC 사의 65nm 공정으로 구현되었고 AD-PLL의 전체 유효 면적은 Decoupling Cap을 제외하고 420um·300um이며 측정된 출력 Clock 신호의 RMS Jitter값은 8GHz 모드에서 357fs, 5GHz 모드에서 394fs이다. AD-PLL의 동작 주파수는 PCIe Spec의 다양한 모드를 지원하기 위해 외부의 입력 모드 신호에 따라서 5GHz/8GHz의 High/Low Band를 지원하고 1.2V의 공급 전압에서 Repeater를 제외하고 8GHz 모드에서는 총 18.26mW, 5GHz 모드에서는 총 12.06mW의 Power를 소비한다.As data transmission speed has increased in recent years, a variety of data processing techniques have been studied and high-speed transceiver has become important. Above all, Phase-Locked Loop (PLL), which synthesizes high frequency clock signal, is one of the important parts. In particular, All-Digital PLL(AD-PLL), which has advantage of programmability and PVT tolerance, is replacing Analog PLL that requires passive element utilization. This thesis presents a 5/8GHz dual mode AD-PLL to provide common clock signal to 32Gbps serial link to support Peripheral Component Interconnect Express(PCIe) PHY. For compatibility with previous generations and wide operating region, AD-PLL uses dual mode Digitally Controlled Oscillator(DCO). Before an actual design, output RMS Jitter, Phase Noise of AD-PLL and quantization error resulting from digital conversion are calculated and analyzed by using Matlab, Verilog behavioral simulation in a short time. In addition, the output of Time-to-Digital Converter(TDC) is directly delivered to the DCO without Digital Loop Filter(DLF) using direct path to solve loop delay issue where information cant be updated within a cycle of reference clock. The proposed AD-PLL is fabricated in 65nm CMOS process and effective area of AD-PLL is 420um·300um and the measured RMS Jitter is 357fs at 8GHz mode, 394fs at 5GHz mode. Also, proposed AD-PLL supports the low/high band(5/8GHz) to be compatible with the various modes of PCIe spec. Power dissipation is 18.26mW at 8GHz mode, 12.06mW at 5GHz mode in 1.2V supply voltage domain excluding repeater.제 1 장 서 론 1 1.1 연구의 배경 1 1.2 논문의 구성 3 제 2 장 Basics of AD-PLL 4 2.1 Introduction of AD-PLL 4 2.2 Building Blocks of AD-PLL 5 2.2.1 Time to Digital Converter 6 2.2.2 Digital Loop Filter 8 2.2.3 Digitally Controlled Oscillator 10 2.3 Phase Noise Analysis 13 2.4 Loop Delay 18 제 3 장 Design of AD-PLL 22 3.1 Design Consideration 22 3.2 Overall Architecture 22 3.3 Phase Frequency Detectable TDC 24 3.4 Digital Loop Filter 27 3.5 Digitally Controlled Oscillator 30 3.6 Direct Path 33 3.7 Level Shifter and Divider 36 3.8 Clock Tree 39 제 4 장 Measurement and Simulation Results 41 4.1 Measurement Setup 41 4.2 Die Photomicrograph 43 4.3 Frequency Tracking Behavior 44 4.4 Clock Distribution 46 4.5 Phase Noise and Spur 47 4.6 Performance Summary 53 제 5 장 Conclusion 55 참고 문헌 56 Abstract 59Maste

    Digital enhancement techniques for fractional-N frequency synthesizers

    Get PDF
    Meeting the demand for unprecedented connectivity in the era of internet-of-things (IoT) requires extremely energy efficient operation of IoT nodes to extend battery life. Managing the data traffic generated by trillions of such nodes also puts severe energy constraints on the data centers. Clock generators that are essential elements in these systems consume significant power and therefore must be optimized for low power and high performance. The focus of this thesis is on improving the energy efficiency of frequency synthesizers and clocking modules by exploring design techniques at both the architectural and circuit levels. In the first part of this work, a digital fractional-N phase locked loop (FNPLL) that employs a high resolution time-to-digital converter (TDC) and a truly ΔΣ fractional divider to achieve low in-band noise with a wide bandwidth is presented. The fractional divider employs a digital-to-time converter (DTC) to cancel out ΔΣ quantization noise in time domain, thus alleviating TDC dynamic range requirements. The proposed digital architecture adopts a narrow range low-power time-amplifier based TDC (TA-TDC) to achieve sub 1ps resolution. Fabricated in 65nm CMOS process, the prototype PLL achieves better than -106dBc/Hz in-band noise and 3MHz PLL bandwidth at 4.5GHz output frequency using 50MHz reference. The PLL achieves excellent jitter performance of 490fsrms, while consumes only 3.7mW. This translates to the best reported jitter-power figure-of-merit (FoM) of -240.5dB among previously reported FNPLLs. Phase noise performance of ring oscillator based digital FNPLLs is severely compromised by conflicting bandwidth requirements to simultaneously suppress oscillator phase and quantization noise introduced by the TDC, ΔΣ fractional divider, and digital-to-analog converter (DAC). As a consequence, their FoM that quantifies the power-jitter tradeoff is at least 25dB worse than their LC-oscillator based FNPLL counterparts. In the second part of this thesis, we seek to close this performance gap by extending PLL bandwidth using quantization noise cancellation techniques and by employing a dual-path digital loop filter to suppress the detrimental impact of DAC quantization noise. A prototype was implemented in a 65nm CMOS process operating over a wide frequency range of 2.0GHz-5.5GHz using a modified extended range multi-modulus divider with seamless switching. The proposed digital FNPLL achieves 1.9psrms integrated jitter while consuming only 4mW at 5GHz output. The measured in-band phase noise is better than -96 dBc/Hz at 1MHz offset. The proposed FNPLL achieves wide bandwidth up to 6MHz using a 50 MHz reference and its FoM is -228.5dB, which is at about 20dB better than previously reported ring-based digital FNPLLs. In the third part, we propose a new multi-output clock generator architecture using open loop fractional dividers for system-on-chip (SoC) platforms. Modern multi-core processors use per core clocking, where each core runs at its own speed. The core frequency can be changed dynamically to optimize for performance or power dissipation using a dynamic frequency scaling (DFS) technique. Fast frequency switching is highly desirable as long as it does not interrupt code execution; therefore it requires smooth frequency transitions with no undershoots. The second main requirement in processor clocking is the capability of spread spectrum frequency modulation. By spreading the clock energy across a wide bandwidth, the electromagnetic interference (EMI) is dramatically reduced. A conventional PLL clock generation approach suffers from a slow frequency settling and limited spread spectrum modulation capabilities. The proposed open loop fractional divider architecture overcomes the bandwidth limitation in fractional-N PLLs. The fractional divider switches the output frequency instantaneously and provides an excellent spread spectrum performance, where precise and programmable modulation depth and frequency can be applied to satisfy different EMI requirements. The fractional divider has unlimited modulation bandwidth resulting in spread spectrum modulation with no filtering, unlike fractional-N PLL; consequently it achieves higher EMI reduction. A prototype fractional divider was implemented in a 65nm CMOS process, where the measured peak-to-peak jitter is less than 27ps over a wide frequency range from 20MHz to 1GHz. The total power consumption is about 3.2mW for 1GHz output frequency. The all-digital implementation of the divider occupies the smallest area of 0.017mm2 compared to state-of-the-art designs. As the data rate of serial links goes higher, the jitter requirements of the clock generator become more stringent. Improving the jitter performance of conventional PLLs to less than (200fsrms) always comes with a large power penalty (tens of mWs). This is due to the PLL coupled noise bandwidth trade-off, which imposes stringent noise requirements on the oscillator and/or loop components. Alternatively, an injection-locked clock multiplier (ILCM) provides many advantages in terms of phase noise, power, and area compared to classical PLLs, but they suffer from a narrow lock-in range and a high sensitivity to PVT variations especially at a large multiplication factor (N). In the fourth part of this thesis, a low-jitter, low-power LC-based ILCM with a digital frequency-tracking loop (FTL) is presented. The proposed FTL relies on a new pulse gating technique to continuously tune the oscillator's free-running frequency. The FTL ensures robust operation across PVT variations and resolves the race condition existing in injection locked PLLs by decoupling frequency tuning from the injection path. As a result, the phase locking condition is only determined by the injection path. This work also introduces an accurate theoretical large-signal analysis for phase domain response (PDR) of injection locked oscillators (ILOs). The proposed PDR analysis captures the asymmetric nature of ILO's lock-in range, and the impact of frequency error on injection strength and phase noise performance. The proposed architecture and analysis are demonstrated by a prototype fabricated in 65 nm CMOS process with active area of 0.25mm2. The prototype ILCM multiplies the reference frequency by 64 to generate an output clock in the range of 6.75GHz-8.25GHz. A superior jitter performance of 190fsrms is achieved, while consuming only 2.25mW power. This translates to a best FoM of -251dB. Unlike conventional PLLs, ILCMs have been fundamentally limited to only integer-N operation and cannot synthesize fractional-N frequencies. In the last part of this thesis, we extend the merits of ILCMs to fractional-N and overcome this fundamental limitation. We employ DTC-based QNC techniques in order to align injected pulses to the oscillator's zero crossings, which enables it to pull the oscillator toward phase lock, thus realizing a fractional-N ILCM. Fabricated in 65nm CMOS process, a prototype 20-bit fractional-N ILCM with an output range of 6.75GHz-8.25GHz consumes only 3.25mW. It achieves excellent jitter performance of 110fsrms and 175fsrms in integer- and fractional-N modes respectively, which translates to the best-reported FoM in both integer- (-255dB) and fractional-N (-252dB) modes. The proposed fractional-N ILCM also features the first-reported rapid on/off capability, where the transient absolute jitter performance at wake-up is bounded below 4ps after less than 4ns. This demonstrates almost instantaneous phase settling. This unique capability enables tremendous energy saving by turning on the clock multiplier only when needed. This energy proportional operation leverages idle times to save power at the system-level of wireline and wireless transceivers

    Analysis and Design of Energy Efficient Frequency Synthesizers for Wireless Integrated Systems

    Full text link
    Advances in ultra-low power (ULP) circuit technologies are expanding the IoT applications in our daily life. However, wireless connectivity, small form factor and long lifetime are still the key constraints for many envisioned wearable, implantable and maintenance-free monitoring systems to be practically deployed at a large scale. The frequency synthesizer is one of the most power hungry and complicated blocks that not only constraints RF performance but also offers subtle scalability with power as well. Furthermore, the only indispensable off-chip component, the crystal oscillator, is also associated with the frequency synthesizer as a reference. This thesis addresses the above issues by analyzing how phase noise of the LO affect the frequency modulated wireless system in different aspects and how different noise sources in the PLL affect the performance. Several chip prototypes have been demonstrated including: 1) An ULP FSK transmitter with SAR assisted FLL; 2) A ring oscillator based all-digital BLE transmitter utilizing a quarter RF frequency LO and 4X frequency multiplier; and 3) An XO-less BLE transmitter with an RF reference recovery receiver. The first 2 designs deal with noise sources in the PLL loop for ultimate power and cost reduction, while the third design deals with the reference noise outside the PLL and explores a way to replace the XO in ULP wireless edge nodes. And at last, a comprehensive PN theory is proposed as the design guideline.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/153420/1/chenxing_1.pd

    Low-Power High-Data-Rate Transmitter Design for Biomedical Application

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore