14,856 research outputs found

    An Exploratory Study of COVID-19 Misinformation on Twitter

    Get PDF
    During the COVID-19 pandemic, social media has become a home ground for misinformation. To tackle this infodemic, scientific oversight, as well as a better understanding by practitioners in crisis management, is needed. We have conducted an exploratory study into the propagation, authors and content of misinformation on Twitter around the topic of COVID-19 in order to gain early insights. We have collected all tweets mentioned in the verdicts of fact-checked claims related to COVID-19 by over 92 professional fact-checking organisations between January and mid-July 2020 and share this corpus with the community. This resulted in 1 500 tweets relating to 1 274 false and 276 partially false claims, respectively. Exploratory analysis of author accounts revealed that the verified twitter handle(including Organisation/celebrity) are also involved in either creating (new tweets) or spreading (retweet) the misinformation. Additionally, we found that false claims propagate faster than partially false claims. Compare to a background corpus of COVID-19 tweets, tweets with misinformation are more often concerned with discrediting other information on social media. Authors use less tentative language and appear to be more driven by concerns of potential harm to others. Our results enable us to suggest gaps in the current scientific coverage of the topic as well as propose actions for authorities and social media users to counter misinformation.Comment: 20 pages, nine figures, four tables. Submitted for peer review, revision

    Emergence of influential spreaders in modified rumor models

    Full text link
    The burst in the use of online social networks over the last decade has provided evidence that current rumor spreading models miss some fundamental ingredients in order to reproduce how information is disseminated. In particular, recent literature has revealed that these models fail to reproduce the fact that some nodes in a network have an influential role when it comes to spread a piece of information. In this work, we introduce two mechanisms with the aim of filling the gap between theoretical and experimental results. The first model introduces the assumption that spreaders are not always active whereas the second model considers the possibility that an ignorant is not interested in spreading the rumor. In both cases, results from numerical simulations show a higher adhesion to real data than classical rumor spreading models. Our results shed some light on the mechanisms underlying the spreading of information and ideas in large social systems and pave the way for more realistic diffusion models.Comment: 14 Pages, 6 figures, accepted for publication in Journal of Statistical Physic

    A Computational Model and Convergence Theorem for Rumor Dissemination in Social Networks

    Full text link
    The spread of rumors, which are known as unverified statements of uncertain origin, may cause tremendous number of social problems. If it would be possible to identify factors affecting spreading a rumor (such as agents' desires, trust network, etc.), then this could be used to slowdown or stop its spreading. A computational model that includes rumor features and the way a rumor is spread among society's members, based on their desires, is therefore needed. Our research is centering on the relation between the homogeneity of the society and rumor convergence in it and result shows that the homogeneity of the society is a necessary condition for convergence of the spreading rumor.Comment: 29 pages, 7 figure

    Learning and Designing Stochastic Processes from Logical Constraints

    Get PDF
    Stochastic processes offer a flexible mathematical formalism to model and reason about systems. Most analysis tools, however, start from the premises that models are fully specified, so that any parameters controlling the system's dynamics must be known exactly. As this is seldom the case, many methods have been devised over the last decade to infer (learn) such parameters from observations of the state of the system. In this paper, we depart from this approach by assuming that our observations are {\it qualitative} properties encoded as satisfaction of linear temporal logic formulae, as opposed to quantitative observations of the state of the system. An important feature of this approach is that it unifies naturally the system identification and the system design problems, where the properties, instead of observations, represent requirements to be satisfied. We develop a principled statistical estimation procedure based on maximising the likelihood of the system's parameters, using recent ideas from statistical machine learning. We demonstrate the efficacy and broad applicability of our method on a range of simple but non-trivial examples, including rumour spreading in social networks and hybrid models of gene regulation

    Online Misinformation: Challenges and Future Directions

    Get PDF
    Misinformation has become a common part of our digital media environments and it is compromising the ability of our societies to form informed opinions. It generates misperceptions, which have affected the decision making processes in many domains, including economy, health, environment, and elections, among others. Misinformation and its generation, propagation, impact, and management is being studied through a variety of lenses (computer science, social science, journalism, psychology, etc.) since it widely affects multiple aspects of society. In this paper we analyse the phenomenon of misinformation from a technological point of view.We study the current socio-technical advancements towards addressing the problem, identify some of the key limitations of current technologies, and propose some ideas to target such limitations. The goal of this position paper is to reflect on the current state of the art and to stimulate discussions on the future design and development of algorithms, methodologies, and applications
    • …
    corecore