3,299 research outputs found

    A review on trust propagation and opinion dynamics in social networks and group decision making frameworks

    Get PDF
    On-line platforms foster the communication capabilities of the Internet to develop large- scale influence networks in which the quality of the interactions can be evaluated based on trust and reputation. So far, this technology is well known for building trust and harness- ing cooperation in on-line marketplaces, such as Amazon (www.amazon.com) and eBay (www.ebay.es). However, these mechanisms are poised to have a broader impact on a wide range of scenarios, from large scale decision making procedures, such as the ones implied in e-democracy, to trust based recommendations on e-health context or influence and per- formance assessment in e-marketing and e-learning systems. This contribution surveys the progress in understanding the new possibilities and challenges that trust and reputation systems pose. To do so, it discusses trust, reputation and influence which are important measures in networked based communication mechanisms to support the worthiness of information, products, services opinions and recommendations. The existent mechanisms to estimate and propagate trust and reputation, in distributed networked scenarios, and how these measures can be integrated in decision making to reach consensus among the agents are analysed. Furthermore, it also provides an overview of the relevant work in opinion dynamics and influence assessment, as part of social networks. Finally, it identi- fies challenges and research opportunities on how the so called trust based network can be leveraged as an influence measure to foster decision making processes and recommen- dation mechanisms in complex social networks scenarios with uncertain knowledge, like the mentioned in e-health and e-marketing frameworks.The authors acknowledge the financial support from the EU project H2020-MSCA-IF-2016-DeciTrustNET-746398, FEDER funds provided in the National Spanish project TIN2016-75850-P , and the support of the RUDN University Program 5-100 (Russian Federation)

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    Trust management schemes for peer-to-peer networks

    Get PDF
    Peer-to-peer (P2P) networking enables users with similar interests to exchange, or obtain files. This network model has been proven popular to exchange music, pictures, or software applications. These files are saved, and most likely executed, at the downloading host. At the expense of this mechanism, worms, viruses, and malware find an open front door to the downloading host and gives them a convenient environment for successful proliferation throughout the network. Although virus detection software is currently available, this countermeasure works in a reactive fashion, and in most times, in an isolated manner. A trust management scheme is considered to contain the proliferation of viruses in P2P networks. Specifically, a cooperative and distributed trust management scheme based on a two-layer approach to bound the proliferation of viruses is proposed. The new scheme is called double-layer dynamic trust (DDT) management scheme. The results show that the proposed scheme bounds the proliferation of malware. With the proposed scheme, the number of infected hosts and the proliferation rate are limited to small values. In addition, it is shown that network activity is not discouraged by using the proposed scheme. Moreover, to improve the efficiency on the calculation of trust values of ratio based normalization models, a model is proposed for trust value calculation using a three-dimensional normalization to represent peer activity with more accuracy than that of a conventional ratio based normalization. Distributed network security is also considered, especially in P2P network security. For many P2P systems, including ad hoc networks and online markets, reputation systems have been considered as a solution for mitigating the affects of malicious peers. However, a sybil attack, wherein forging identities is performed to unfairly and arbitrarily influence the reputation of peers in a network or community. To defend against sybil attack, each reported transaction, which is used to calculate trust values, is verified. In this thesis, it is shown that peer reputation alone cannot bound network subversion of a sybil attack. Therefore, a new trust management framework, called Sybildefense, is introduced. This framework combines a trust management scheme with a cryptography mechanism to verify different transaction claims issue by peers, including those bogus claims of sybil peers. To improve the efficiency on the identification of honest peers from sybil peers, a k-means clustering mechanism is adopted. Moreover, to include a list of peer’s trustees in a warning messages is proposed to generate a local table for a peer that it is used to identify possible clusters of sybil peers. The defensive performance of these algorithms are compared under sybil attacks. The performance results show that the proposed framework (Sybildefense) can thwart sybil attacks efficiently

    Opinion Cascades and Echo-Chambers in Online Networks: A Proof of Concept Agent-Based Model

    Get PDF
    In online networks, the polarization of opinions (e.g., regarding presidential elections or referenda) has been associated with the creation of “echo-chambers” of like-minded peers, secluded from those of contrary viewpoints. Previous work has commonly attributed such phenomena to self-regarding preferences (e.g., confirmation bias), individual differences, and the pre-dispositions of users, with clusters forming over repeated interactions. The present work provides a proof of concept Agent-Based Model that demonstrates online networks are susceptible to echo-chambers from a single opinion cascade, due to the spatiotemporal order induced by lateral transmission. This susceptibility is found to vary as a function of degree of interconnectivity and opinion strength. Critically, such effects are found despite globally proportionate levels of opinions, equally rational agents (i.e. absent conformity, confirmation bias or pre-disposition architecture), and prior to cyclical interactions. The assumptions and implications of this work, including the value of Agent-Based Modelling to cognitive psychology, are discussed

    Opinion Cascades and Echo-Chambers in Online Networks: A Proof of Concept Agent-Based Model

    Get PDF
    In online networks, the polarization of opinions (e.g., regarding presidential elections or referenda) has been associated with the creation of “echo-chambers” of like-minded peers, secluded from those of contrary viewpoints. Previous work has commonly attributed such phenomena to self-regarding preferences (e.g., confirmation bias), individual differences, and the pre-dispositions of users, with clusters forming over repeated interactions. The present work provides a proof of concept Agent-Based Model that demonstrates online networks are susceptible to echo-chambers from a single opinion cascade, due to the spatiotemporal order induced by lateral transmission. This susceptibility is found to vary as a function of degree of interconnectivity and opinion strength. Critically, such effects are found despite globally proportionate levels of opinions, equally rational agents (i.e. absent conformity, confirmation bias or pre-disposition architecture), and prior to cyclical interactions. The assumptions and implications of this work, including the value of Agent-Based Modelling to cognitive psychology, are discussed

    A multi-dimensional trust-model for dynamic, scalable and resources-efficient trust-management in social internet of things

    Get PDF
    L'internet des Objets (IoT) est un paradigme qui a rendu les objets du quotidien, intelligents en leur offrant la possibilité de se connecter à Internet, de communiquer et d'interagir. L'intégration de la composante sociale dans l'IoT a donné naissance à l'Internet des Objets Social (SIoT), qui a permis de surmonter diverse problématiques telles que l'interopérabilité et la découverte de ressources. Dans ce type d'environnement, les participants rivalisent afin d'offrir une variété de services attrayants. Certains d'entre eux ont recours à des comportements malveillants afin de propager des services de mauvaise qualité. Ils lancent des attaques, dites de confiance, et brisent les fonctionnalités de base du système. Plusieurs travaux de la littérature ont abordé ce problème et ont proposé différents modèles de confiance. La majorité d'entre eux ont tenté de réappliquer des modèles de confiance conçus pour les réseaux sociaux ou les réseaux pair-à-pair. Malgré les similitudes entre ces types de réseaux, les réseaux SIoT présentent des particularités spécifiques. Dans les SIoT, nous avons différents types d'entités qui collaborent, à savoir des humains, des dispositifs et des services. Les dispositifs peuvent présenter des capacités de calcul et de stockage très limitées et leur nombre peut atteindre des millions. Le réseau qui en résulte est complexe et très dynamique et les répercussions des attaques de confiance peuvent être plus importantes. Nous proposons un nouveau modèle de confiance, multidimensionnel, dynamique et scalable, spécifiquement conçu pour les environnements SIoT. Nous proposons, en premier lieu, des facteurs permettant de décrire le comportement des trois types de nœuds impliqués dans les réseaux SIoT et de quantifier le degré de confiance selon les trois dimensions de confiance résultantes. Nous proposons, ensuite, une méthode d'agrégation basée sur l'apprentissage automatique et l'apprentissage profond qui permet d'une part d'agréger les facteurs proposés pour obtenir un score de confiance permettant de classer les nœuds, mais aussi de détecter les types d'attaques de confiance et de les contrer. Nous proposons, ensuite, une méthode de propagation hybride qui permet de diffuser les valeurs de confiance dans le réseau, tout en remédiant aux inconvénients des méthodes centralisée et distribuée. Cette méthode permet d'une part d'assurer la scalabilité et le dynamisme et d'autre part, de minimiser la consommation des ressources. Les expérimentations appliquées sur des de données synthétiques nous ont permis de valider le modèle proposé.The Internet of Things (IoT) is a paradigm that has made everyday objects intelligent by giving them the ability to connect to the Internet, communicate and interact. The integration of the social component in the IoT has given rise to the Social Internet of Things (SIoT), which has overcome various issues such as interoperability, navigability and resource/service discovery. In this type of environment, participants compete to offer a variety of attractive services. Some of them resort to malicious behavior to propagate poor quality services. They launch so-called Trust-Attacks (TA) and break the basic functionality of the system. Several works in the literature have addressed this problem and have proposed different trust-models. Most of them have attempted to adapt and reapply trust models designed for traditional social networks or peer-to-peer networks. Despite the similarities between these types of networks, SIoT ones have specific particularities. In SIoT, there are different types of entities that collaborate: humans, devices, and services. Devices can have very limited computing and storage capacities, and their number can be as high as a few million. The resulting network is complex and highly dynamic, and the impact of Trust-Attacks can be more compromising. In this work, we propose a Multidimensional, Dynamic, Resources-efficient and Scalable trust-model that is specifically designed for SIoT environments. We, first, propose features to describe the behavior of the three types of nodes involved in SIoT networks and to quantify the degree of trust according to the three resulting Trust-Dimensions. We propose, secondly, an aggregation method based on Supervised Machine-Learning and Deep Learning that allows, on the one hand, to aggregate the proposed features to obtain a trust score allowing to rank the nodes, but also to detect the different types of Trust-Attacks and to counter them. We then propose a hybrid propagation method that allows spreading trust values in the network, while overcoming the drawbacks of centralized and distributed methods. The proposed method ensures scalability and dynamism on the one hand, and minimizes resource consumption (computing and storage), on the other. Experiments applied to synthetic data have enabled us to validate the resilience and performance of the proposed model

    Networks and trust: systems for understanding and supporting internet security

    Get PDF
    Includes bibliographical references.2022 Fall.This dissertation takes a systems-level view of the multitude of existing trust management systems to make sense of when, where and how (or, in some cases, if) each is best utilized. Trust is a belief by one person that by transacting with another person (or organization) within a specific context, a positive outcome will result. Trust serves as a heuristic that enables us to simplify the dozens decisions we make each day about whom we will transact with. In today's hyperconnected world, in which for many people a bulk of their daily transactions related to business, entertainment, news, and even critical services like healthcare take place online, we tend to rely even more on heuristics like trust to help us simplify complex decisions. Thus, trust plays a critical role in online transactions. For this reason, over the past several decades researchers have developed a plethora of trust metrics and trust management systems for use in online systems. These systems have been most frequently applied to improve recommender systems and reputation systems. They have been designed for and applied to varied online systems including peer-to-peer (P2P) filesharing networks, e-commerce platforms, online social networks, messaging and communication networks, sensor networks, distributed computing networks, and others. However, comparatively little research has examined the effects on individuals, organizations or society of the presence or absence of trust in online sociotechnical systems. Using these existing trust metrics and trust management systems, we design a set of experiments to benchmark the performance of these existing systems, which rely heavily on network analysis methods. Drawing on the experiments' results, we propose a heuristic decision-making framework for selecting a trust management system for use in online systems. In this dissertation we also investigate several related but distinct aspects of trust in online sociotechnical systems. Using network/graph analysis methods, we examine how trust (or lack of trust) affects the performance of online networks in terms of security and quality of service. We explore the structure and behavior of online networks including Twitter, GitHub, and Reddit through the lens of trust. We find that higher levels of trust within a network are associated with more spread of misinformation (a form of cybersecurity threat, according to the US CISA) on Twitter. We also find that higher levels of trust in open source developer networks on GitHub are associated with more frequent incidences of cybersecurity vulnerabilities. Using our experimental and empirical findings previously described, we apply the Systems Engineering Process to design and prototype a trust management tool for use on Reddit, which we dub Coni the Trust Moderating Bot. Coni is, to the best of our knowledge, the first trust management tool designed specifically for use on the Reddit platform. Through our work with Coni, we develop and present a blueprint for constructing a Reddit trust tool which not only measures trust levels, but can use these trust levels to take actions on Reddit to improve the quality of submissions within the community (a subreddit)

    Design of Randomized Experiments in Networks

    Get PDF
    Over the last decade, the emergence of pervasive online and digitally enabled environments has created a rich source of detailed data on human behavior. Yet, the promise of big data has recently come under fire for its inability to separate correlation from causation-to derive actionable insights and yield effective policies. Fortunately, the same online platforms on which we interact on a day-to-day basis permit experimentation at large scales, ushering in a new movement toward big experiments. Randomized controlled trials are the heart of the scientific method and when designed correctly provide clean causal inferences that are robust and reproducible. However, the realization that our world is highly connected and that behavioral and economic outcomes at the individual and population level depend upon this connectivity challenges the very principles of experimental design. The proper design and analysis of experiments in networks is, therefore, critically important. In this work, we categorize and review the emerging strategies to design and analyze experiments in networks and discuss their strengths and weaknesses
    • …
    corecore