970 research outputs found

    Tatouage audio par EMD

    Get PDF
    In this paper a new adaptive audio watermarking algorithm based on Empirical Mode Decomposition (EMD) is introduced. The audio signal is divided into frames and each one is decomposed adaptively, by EMD, into intrinsic oscillatory components called Intrinsic Mode Functions (IMFs). The watermark and the synchronization codes are embedded into the extrema of the last IMF, a low frequency mode stable under different attacks and preserving audio perceptual quality of the host signal. The data embedding rate of the proposed algorithm is 46.9–50.3 b/s. Relying on exhaustive simulations, we show the robustness of the hidden watermark for additive noise, MP3 compression, re-quantization, filtering, cropping and resampling. The comparison analysis shows that our method has better performance than watermarking schemes reported recently

    High capacity audio watermarking using FFT amplitude interpolation

    Get PDF
    An audio watermarking technique in the frequency domain which takes advantage of interpolation is proposed. Interpolated FFT samples are used to generate imperceptible marks. The experimental results show that the suggested method has very high capacity (about 3kbps), without significant perceptual distortion (ODG about -0.5) and provides robustness against common audio signal processing such as echo, add noise, filtering, resampling and MPEG compression (MP3). Depending on the specific application, the tuning parameters could be selected adaptively to achieve even more capacity and better transparency

    Robust high-capacity audio watermarking based on FFT amplitude modification

    Get PDF
    This paper proposes a novel robust audio watermarking algorithm to embed data and extract it in a bit-exact manner based on changing the magnitudes of the FFT spectrum. The key point is selecting a frequency band for embedding based on the comparison between the original and the MP3 compressed/decompressed signal and on a suitable scaling factor. The experimental results show that the method has a very high capacity (about 5 kbps), without significant perceptual distortion (ODG about -0.25) and provides robustness against common audio signal processing such as added noise, filtering and MPEG compression (MP3). Furthermore, the proposed method has a larger capacity (number of embedded bits to number of host bits rate) than recent image data hiding methods
    corecore