21 research outputs found

    Blind Image Watermark Detection Algorithm based on Discrete Shearlet Transform Using Statistical Decision Theory

    Get PDF
    Blind watermarking targets the challenging recovery of the watermark when the host is not available during the detection stage.This paper proposes Discrete Shearlet Transform as a new embedding domain for blind image watermarking. Our novel DST blind watermark detection system uses a nonadditive scheme based on the statistical decision theory. It first computes the probability density function (PDF) of the DST coefficients modelled as a Laplacian distribution. The resulting likelihood ratio is compared with a decision threshold calculated using Neyman-Pearson criterion to minimise the missed detection subject to a fixed false alarm probability. Our method is evaluated in terms of imperceptibility, robustness and payload against different attacks (Gaussian noise, Blurring, Cropping, Compression and Rotation) using 30 standard grayscale images covering different characteristics (smooth, more complex with a lot of edges and high detail textured regions). The proposed method shows greater windowing flexibility with more sensitive to directional and anisotropic features when compared against Discrete Wavelet and Contourlets

    Data Security using Reversible Data Hiding with Optimal Value Transfer

    Get PDF
    In this paper a novel reversible data hiding algorithm is used which can recover image without any distortion. This algorithm uses zero or minimum points of an image and modifies the pixel. It is proved experimentally that the peak signal to noise ratio of the marked image generated by this method and the original image is guaranteed to be above 48 dB this lower bound of peak signal to noise ratio is much higher than all reversible data hiding technique present in the literature. Execution time of proposed system is short. The algorithm has been successfully applied to all types of images

    Robust light field watermarking by 4D wavelet transform

    Get PDF
    Unlike common 2D images, the light field representation of a scene delivers spatial and angular description which is of paramount importance for 3D reconstruction. Despite the numerous methods proposed for 2D image watermarking, such methods do not address the angular information of the light field. Hence the exploitation of such methods may cause severe destruction of the angular information. In this paper, we propose a novel method for light field watermarking with extensive consideration of the spatial and angular information. Considering the 4D innate of the light field, the proposed method incorporates 4D wavelet for the purpose of watermarking and converts the heavily-correlated channels from RGB domain to YUV. The robustness of the proposed method has been evaluated against common image processing attacks

    Robust Logo Watermarking

    Get PDF
    Digital image watermarking is used to protect the copyright of digital images. In this thesis, a novel blind logo image watermarking technique for RGB images is proposed. The proposed technique exploits the error correction capabilities of the Human Visual System (HVS). It embeds two different watermarks in the wavelet/multiwavelet domains. The two watermarks are embedded in different sub-bands, are orthogonal, and serve different purposes. One is a high capacity multi-bit watermark used to embed the logo, and the other is a 1-bit watermark which is used for the detection and reversal of geometrical attacks. The two watermarks are both embedded using a spread spectrum approach, based on a pseudo-random noise (PN) sequence and a unique secret key. Robustness against geometric attacks such as Rotation, Scaling, and Translation (RST) is achieved by embedding the 1-bit watermark in the Wavelet Transform Modulus Maxima (WTMM) coefficients of the wavelet transform. Unlike normal wavelet coefficients, WTMM coefficients are shift invariant, and this important property is used to facilitate the detection and reversal of RST attacks. The experimental results show that the proposed watermarking technique has better distortion parameter detection capabilities, and compares favourably against existing techniques in terms of robustness against geometrical attacks such as rotation, scaling, and translation

    Towards Optimal Copyright Protection Using Neural Networks Based Digital Image Watermarking

    Get PDF
    In the field of digital watermarking, digital image watermarking for copyright protection has attracted a lot of attention in the research community. Digital watermarking contains varies techniques for protecting the digital content. Among all those techniques,Discrete Wavelet Transform (DWT) provides higher image imperceptibility and robustness. Over the years, researchers have been designing watermarking techniques with robustness in mind, in order for the watermark to be resistant against any image processing techniques. Furthermore, the requirements of a good watermarking technique includes a tradeoff between robustness, image quality (imperceptibility) and capacity. In this paper, we have done an extensive literature review for the existing DWT techniques and those combined with other techniques such as Neural Networks. In addition to that, we have discuss the contribution of Neural Networks in copyright protection. Finally we reached our goal in which we identified the research gaps existed in the current watermarking schemes. So that, it will be easily to obtain an optimal techniques to make the watermark object robust to attacks while maintaining the imperceptibility to enhance the copyright protection
    corecore