2,732 research outputs found

    Action Recognition by Hierarchical Mid-level Action Elements

    Full text link
    Realistic videos of human actions exhibit rich spatiotemporal structures at multiple levels of granularity: an action can always be decomposed into multiple finer-grained elements in both space and time. To capture this intuition, we propose to represent videos by a hierarchy of mid-level action elements (MAEs), where each MAE corresponds to an action-related spatiotemporal segment in the video. We introduce an unsupervised method to generate this representation from videos. Our method is capable of distinguishing action-related segments from background segments and representing actions at multiple spatiotemporal resolutions. Given a set of spatiotemporal segments generated from the training data, we introduce a discriminative clustering algorithm that automatically discovers MAEs at multiple levels of granularity. We develop structured models that capture a rich set of spatial, temporal and hierarchical relations among the segments, where the action label and multiple levels of MAE labels are jointly inferred. The proposed model achieves state-of-the-art performance in multiple action recognition benchmarks. Moreover, we demonstrate the effectiveness of our model in real-world applications such as action recognition in large-scale untrimmed videos and action parsing

    Contextual cropping and scaling of TV productions

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-011-0804-3. Copyright @ Springer Science+Business Media, LLC 2011.In this paper, an application is presented which automatically adapts SDTV (Standard Definition Television) sports productions to smaller displays through intelligent cropping and scaling. It crops regions of interest of sports productions based on a smart combination of production metadata and systematic video analysis methods. This approach allows a context-based composition of cropped images. It provides a differentiation between the original SD version of the production and the processed one adapted to the requirements for mobile TV. The system has been comprehensively evaluated by comparing the outcome of the proposed method with manually and statically cropped versions, as well as with non-cropped versions. Envisaged is the integration of the tool in post-production and live workflows

    Semi-Supervised First-Person Activity Recognition in Body-Worn Video

    Get PDF
    Body-worn cameras are now commonly used for logging daily life, sports, and law enforcement activities, creating a large volume of archived footage. This paper studies the problem of classifying frames of footage according to the activity of the camera-wearer with an emphasis on application to real-world police body-worn video. Real-world datasets pose a different set of challenges from existing egocentric vision datasets: the amount of footage of different activities is unbalanced, the data contains personally identifiable information, and in practice it is difficult to provide substantial training footage for a supervised approach. We address these challenges by extracting features based exclusively on motion information then segmenting the video footage using a semi-supervised classification algorithm. On publicly available datasets, our method achieves results comparable to, if not better than, supervised and/or deep learning methods using a fraction of the training data. It also shows promising results on real-world police body-worn video

    An Overview of Video Shot Clustering and Summarization Techniques for Mobile Applications

    Get PDF
    The problem of content characterization of video programmes is of great interest because video appeals to large audiences and its efficient distribution over various networks should contribute to widespread usage of multimedia services. In this paper we analyze several techniques proposed in literature for content characterization of video programmes, including movies and sports, that could be helpful for mobile media consumption. In particular we focus our analysis on shot clustering methods and effective video summarization techniques since, in the current video analysis scenario, they facilitate the access to the content and help in quick understanding of the associated semantics. First we consider the shot clustering techniques based on low-level features, using visual, audio and motion information, even combined in a multi-modal fashion. Then we concentrate on summarization techniques, such as static storyboards, dynamic video skimming and the extraction of sport highlights. Discussed summarization methods can be employed in the development of tools that would be greatly useful to most mobile users: in fact these algorithms automatically shorten the original video while preserving most events by highlighting only the important content. The effectiveness of each approach has been analyzed, showing that it mainly depends on the kind of video programme it relates to, and the type of summary or highlights we are focusing on

    Activity representation with motion hierarchies

    Get PDF
    International audienceComplex activities, e.g., pole vaulting, are composed of a variable number of sub-events connected by complex spatio-temporal relations, whereas simple actions can be represented as sequences of short temporal parts. In this paper, we learn hierarchical representations of activity videos in an unsupervised manner. These hierarchies of mid-level motion components are data-driven decompositions specific to each video. We introduce a spectral divisive clustering algorithm to efficiently extract a hierarchy over a large number of tracklets (i.e., local trajectories). We use this structure to represent a video as an unordered binary tree. We model this tree using nested histograms of local motion features. We provide an efficient positive definite kernel that computes the structural and visual similarity of two hierarchical decompositions by relying on models of their parent-child relations. We present experimental results on four recent challenging benchmarks: the High Five dataset [Patron-Perez et al, 2010], the Olympics Sports dataset [Niebles et al, 2010], the Hollywood 2 dataset [Marszalek et al, 2009], and the HMDB dataset [Kuehne et al, 2011]. We show that pervideo hierarchies provide additional information for activity recognition. Our approach improves over unstructured activity models, baselines using other motion decomposition algorithms, and the state of the art
    • …
    corecore