112 research outputs found

    Attend and Interact: Higher-Order Object Interactions for Video Understanding

    Full text link
    Human actions often involve complex interactions across several inter-related objects in the scene. However, existing approaches to fine-grained video understanding or visual relationship detection often rely on single object representation or pairwise object relationships. Furthermore, learning interactions across multiple objects in hundreds of frames for video is computationally infeasible and performance may suffer since a large combinatorial space has to be modeled. In this paper, we propose to efficiently learn higher-order interactions between arbitrary subgroups of objects for fine-grained video understanding. We demonstrate that modeling object interactions significantly improves accuracy for both action recognition and video captioning, while saving more than 3-times the computation over traditional pairwise relationships. The proposed method is validated on two large-scale datasets: Kinetics and ActivityNet Captions. Our SINet and SINet-Caption achieve state-of-the-art performances on both datasets even though the videos are sampled at a maximum of 1 FPS. To the best of our knowledge, this is the first work modeling object interactions on open domain large-scale video datasets, and we additionally model higher-order object interactions which improves the performance with low computational costs.Comment: CVPR 201

    Hierarchical Boundary-Aware Neural Encoder for Video Captioning

    Get PDF
    The use of Recurrent Neural Networks for video captioning has recently gained a lot of attention, since they can be used both to encode the input video and to generate the corresponding description. In this paper, we present a recurrent video encoding scheme which can discover and leverage the hierarchical structure of the video. Unlike the classical encoder-decoder approach, in which a video is encoded continuously by a recurrent layer, we propose a novel LSTM cell, which can identify discontinuity points between frames or segments and modify the temporal connections of the encoding layer accordingly. We evaluate our approach on three large-scale datasets: the Montreal Video Annotation dataset, the MPII Movie Description dataset and the Microsoft Video Description Corpus. Experiments show that our approach can discover appropriate hierarchical representations of input videos and improve the state of the art results on movie description datasets

    A Survey of Deep Learning in Sports Applications: Perception, Comprehension, and Decision

    Full text link
    Deep learning has the potential to revolutionize sports performance, with applications ranging from perception and comprehension to decision. This paper presents a comprehensive survey of deep learning in sports performance, focusing on three main aspects: algorithms, datasets and virtual environments, and challenges. Firstly, we discuss the hierarchical structure of deep learning algorithms in sports performance which includes perception, comprehension and decision while comparing their strengths and weaknesses. Secondly, we list widely used existing datasets in sports and highlight their characteristics and limitations. Finally, we summarize current challenges and point out future trends of deep learning in sports. Our survey provides valuable reference material for researchers interested in deep learning in sports applications

    Vision and language understanding with localized evidence

    Full text link
    Enabling machines to solve computer vision tasks with natural language components can greatly improve human interaction with computers. In this thesis, we address vision and language tasks with deep learning methods that explicitly localize relevant visual evidence. Spatial evidence localization in images enhances the interpretability of the model, while temporal localization in video is necessary to remove irrelevant content. We apply our methods to various vision and language tasks, including visual question answering, temporal activity detection, dense video captioning and cross-modal retrieval. First, we tackle the problem of image question answering, which requires the model to predict answers to questions posed about images. We design a memory network with a question-guided spatial attention mechanism which assigns higher weights to regions that are more relevant to the question. The visual evidence used to derive the answer can be shown by visualizing the attention weights in images. We then address the problem of localizing temporal evidence in videos. For most language/vision tasks, only part of the video is relevant to the linguistic component, so we need to detect these relevant events in videos. We propose an end-to-end model for temporal activity detection, which can detect arbitrary length activities by coordinate regression with respect to anchors and contains a proposal stage to filter out background segments, saving computation time. We further extend activity category detection to event captioning, which can express richer semantic meaning compared to a class label. This derives the problem of dense video captioning, which involves two sub-problems: localizing distinct events in long video and generating captions for the localized events. We propose an end-to-end hierarchical captioning model with vision and language context modeling in which the captioning training affects the activity localization. Lastly, the task of text-to-clip video retrieval requires one to localize the specified query instead of detecting and captioning all events. We propose a model based on the early fusion of words and visual features, outperforming standard approaches which embed the whole sentence before performing late feature fusion. Furthermore, we use queries to regulate the proposal network to generate query related proposals. In conclusion, our proposed visual localization mechanism applies across a variety of vision and language tasks and achieves state-of-the-art results. Together with the inference module, our work can contribute to solving other tasks such as video question answering in future research

    Visual-Semantic Learning

    Get PDF
    Visual-semantic learning is an attractive and challenging research direction aiming to understand complex semantics of heterogeneous data from two domains, i.e., visual signals (i.e., images and videos) and natural language (i.e., captions and questions). It requires memorizing the rich information in a single modality and a joint comprehension of multiple modalities. Artificial intelligence (AI) systems with human-level intelligence are claimed to learn like humans, such as efficiently leveraging brain memory for better comprehension, rationally incorporating common-sense knowledge into reasoning, quickly gaining in-depth understanding given a few samples, and analyzing relationships among abundant and informative events. However, these intelligence capacities are effortless for humans but challenging for machines. To bridge the discrepancy between human-level intelligence and present-day visual-semantic learning, we start from its basic understanding ability by studying the visual question answering (e.g., Image-QA and Video-QA) tasks from the perspectives of memory augmentation and common-sense knowledge incorporation. Furthermore, we stretch it to a more challenging situation with limited and partially unlabeled training data (i.e., Few-shot Visual-Semantic Learning) to imitate the fast learning ability of humans. Finally, to further enhance visual-semantic performance in natural videos with numerous spatio-temporal dynamics, we investigate exploiting event-correlated information for a comprehensive understanding of cross-modal semantics. To study the essential visual-semantic understanding ability of the human brain with memory, we first propose a novel Memory Augmented Deep Recurrent Neural Network (i.e., MA-DRNN) model for Video-QA, which features a new method for encoding videos and questions, and memory augmentation using the emerging Differentiable Neural Computer (i.e., DNC). Specifically, we encode semantic (i.e., questions) information before visual (i.e., videos) information, which leads to better visual-semantic representations. Moreover, we leverage Differentiable Neural Computer (with external memory) to store and retrieve valuable information in questions and videos and model the long-term visual-semantic dependency. In addition to basic understanding, to tackle visual-semantic reasoning that requires external knowledge beyond visible contents (e.g., KB-Image-QA), we propose a novel framework that endows the model with capabilities of answering more general questions and achieves better exploitation of external knowledge through generating Multiple Clues for Reasoning with Memory Neural Networks (i.e., MCR-MemNN). Specifically, a well-defined detector is adopted to predict image-question-related relation phrases, each delivering two complementary clues to retrieve the supporting facts from an external knowledge base (i.e., KB). These facts are encoded into a continuous embedding space using a content-addressable memory. Afterward, mutual interactions between visual-semantic representation and the supporting facts stored in memory are captured to distill the most relevant information in three modalities (i.e., image, question, and KB). Finally, the optimal answer is predicted by choosing the supporting fact with the highest score. Furthermore, to enable a fast, in-depth understanding given a small number of samples, especially with heterogeneity in the multi-modal scenarios such as image question answering (i.e., Image-QA) and image captioning (i.e., IC), we study the few-shot visual-semantic learning and present the Hierarchical Graph ATtention Network (i.e., HGAT). This two-stage network models the intra- and inter-modal relationships with limited image-text samples. The main contributions of HGAT can be summarized as follows: 1) it sheds light on tackling few-shot multi-modal learning problems, which focuses primarily, but not exclusively, on visual and semantic modalities, through better exploitation of the intra-relationship of each modality and an attention-based co-learning framework between modalities using a hierarchical graph-based architecture; 2) it achieves superior performance on both visual question answering and image captioning in the few-shot setting; 3) it can be easily extended to the semi-supervised setting where image-text samples are partially unlabeled. Although various attention mechanisms have been utilized to manage contextualized representations by modeling intra- and inter-modal relationships of the two modalities, one limitation of the predominant visual-semantic methods is the lack of reasoning with event correlation, sensing, and analyzing relationships among abundant and informative events contained in the video. To this end, we introduce the dense caption modality as a new auxiliary and distill event-correlated information to infer the correct answer. We propose a novel end-to-end trainable model, Event-Correlated Graph Neural Networks (EC-GNNs), to perform cross-modal reasoning over information from the three modalities (i.e., caption, video, and question). Besides exploiting a new modality, we employ cross-modal reasoning modules to explicitly model inter-modal relationships and aggregate relevant information across different modalities. We propose a question-guided self-adaptive multi-modal fusion module to collect the question-oriented and event-correlated evidence through multi-step reasoning. To evaluate our proposed models, we conduct extensive experiments on VTW, MSVD-QA, and TGIF-QA datasets for Video-QA task, Toronto COCO-QA, Visual Genome-QA datasets for few-shot Image-QA task, COCO-FITB dataset for few-shot IC task, and FVQA, Visual7W + ConceptNet datasets for KB-Image-QA task. The experimental results justify these models’ effectiveness and superiority over baseline methods
    • …
    corecore