271 research outputs found

    Anti-spoofing Methods for Automatic SpeakerVerification System

    Full text link
    Growing interest in automatic speaker verification (ASV)systems has lead to significant quality improvement of spoofing attackson them. Many research works confirm that despite the low equal er-ror rate (EER) ASV systems are still vulnerable to spoofing attacks. Inthis work we overview different acoustic feature spaces and classifiersto determine reliable and robust countermeasures against spoofing at-tacks. We compared several spoofing detection systems, presented so far,on the development and evaluation datasets of the Automatic SpeakerVerification Spoofing and Countermeasures (ASVspoof) Challenge 2015.Experimental results presented in this paper demonstrate that the useof magnitude and phase information combination provides a substantialinput into the efficiency of the spoofing detection systems. Also wavelet-based features show impressive results in terms of equal error rate. Inour overview we compare spoofing performance for systems based on dif-ferent classifiers. Comparison results demonstrate that the linear SVMclassifier outperforms the conventional GMM approach. However, manyresearchers inspired by the great success of deep neural networks (DNN)approaches in the automatic speech recognition, applied DNN in thespoofing detection task and obtained quite low EER for known and un-known type of spoofing attacks.Comment: 12 pages, 0 figures, published in Springer Communications in Computer and Information Science (CCIS) vol. 66

    Voice Spoofing Countermeasures: Taxonomy, State-of-the-art, experimental analysis of generalizability, open challenges, and the way forward

    Full text link
    Malicious actors may seek to use different voice-spoofing attacks to fool ASV systems and even use them for spreading misinformation. Various countermeasures have been proposed to detect these spoofing attacks. Due to the extensive work done on spoofing detection in automated speaker verification (ASV) systems in the last 6-7 years, there is a need to classify the research and perform qualitative and quantitative comparisons on state-of-the-art countermeasures. Additionally, no existing survey paper has reviewed integrated solutions to voice spoofing evaluation and speaker verification, adversarial/antiforensics attacks on spoofing countermeasures, and ASV itself, or unified solutions to detect multiple attacks using a single model. Further, no work has been done to provide an apples-to-apples comparison of published countermeasures in order to assess their generalizability by evaluating them across corpora. In this work, we conduct a review of the literature on spoofing detection using hand-crafted features, deep learning, end-to-end, and universal spoofing countermeasure solutions to detect speech synthesis (SS), voice conversion (VC), and replay attacks. Additionally, we also review integrated solutions to voice spoofing evaluation and speaker verification, adversarial and anti-forensics attacks on voice countermeasures, and ASV. The limitations and challenges of the existing spoofing countermeasures are also presented. We report the performance of these countermeasures on several datasets and evaluate them across corpora. For the experiments, we employ the ASVspoof2019 and VSDC datasets along with GMM, SVM, CNN, and CNN-GRU classifiers. (For reproduceability of the results, the code of the test bed can be found in our GitHub Repository

    A Study of Using Cepstrogram for Countermeasure Against Replay Attacks

    Full text link
    In this paper, we investigate the properties of the cepstrogram and demonstrate its effectiveness as a powerful feature for countermeasure against replay attacks. Cepstrum analysis of replay attacks suggests that crucial information for anti-spoofing against replay attacks may retain in the cepstrogram. Experimental results on the ASVspoof 2019 physical access (PA) database demonstrate that, compared with other features, the cepstrogram dominates in both single and fusion systems when building countermeasures against replay attacks. Our LCNN-based single and fusion systems with the cepstrogram feature outperform the corresponding LCNN-based systems without using the cepstrogram feature and several state-of-the-art (SOTA) single and fusion systems in the literature.Comment: Submitted to INTERSPEECH 202

    Subband modeling for spoofing detection in automatic speaker verification

    Get PDF
    Spectrograms - time-frequency representations of audio signals - have found widespread use in neural network-based spoofing detection. While deep models are trained on the fullband spectrum of the signal, we argue that not all frequency bands are useful for these tasks. In this paper, we systematically investigate the impact of different subbands and their importance on replay spoofing detection on two benchmark datasets: ASVspoof 2017 v2.0 and ASVspoof 2019 PA. We propose a joint subband modelling framework that employs n different sub-networks to learn subband specific features. These are later combined and passed to a classifier and the whole network weights are updated during training. Our findings on the ASVspoof 2017 dataset suggest that the most discriminative information appears to be in the first and the last 1 kHz frequency bands, and the joint model trained on these two subbands shows the best performance outperforming the baselines by a large margin. However, these findings do not generalise on the ASVspoof 2019 PA dataset. This suggests that the datasets available for training these models do not reflect real world replay conditions suggesting a need for careful design of datasets for training replay spoofing countermeasures
    • …
    corecore