84 research outputs found

    Improved Emotion Recognition Using Gaussian Mixture Model and Extreme Learning Machine in Speech and Glottal Signals

    Get PDF
    Recently, researchers have paid escalating attention to studying the emotional state of an individual from his/her speech signals as the speech signal is the fastest and the most natural method of communication between individuals. In this work, new feature enhancement using Gaussian mixture model (GMM) was proposed to enhance the discriminatory power of the features extracted from speech and glottal signals. Three different emotional speech databases were utilized to gauge the proposed methods. Extreme learning machine (ELM) and k-nearest neighbor (kNN) classifier were employed to classify the different types of emotions. Several experiments were conducted and results show that the proposed methods significantly improved the speech emotion recognition performance compared to research works published in the literature

    Stress recognition from speech signal

    Get PDF
    Předložená disertační práce se zabývá vývojem algoritmů pro detekci stresu z řečového signálu. Inovativnost této práce se vyznačuje dvěma typy analýzy řečového signálu, a to za použití samohláskových polygonů a analýzy hlasivkových pulsů. Obě tyto základní analýzy mohou sloužit k detekci stresu v řečovém signálu, což bylo dokázáno sérií provedených experimentů. Nejlepších výsledků bylo dosaženo pomocí tzv. Closing-To-Opening phase ratio příznaku v Top-To-Bottom kritériu v kombinaci s vhodným klasifikátorem. Detekce stresu založená na této analýze může být definována jako jazykově i fonémově nezávislá, což bylo rovněž dokázáno získanými výsledky, které dosahují v některých případech až 95% úspěšnosti. Všechny experimenty byly provedeny na vytvořené české databázi obsahující reálný stres, a některé experimenty byly také provedeny pro anglickou stresovou databázi SUSAS.Presented doctoral thesis is focused on development of algorithms for psychological stress detection in speech signal. The novelty of this thesis aims on two different analysis of the speech signal- the analysis of vowel polygons and the analysis of glottal pulses. By performed experiments, the doctoral thesis uncovers the possible usage of both fundamental analyses for psychological stress detection in speech. The analysis of glottal pulses in amplitude domain according to Top-To-Bottom criterion seems to be as the most effective with the combination of properly chosen classifier, which can be defined as language and phoneme independent way to stress recognition. All experiments were performed on developed Czech real stress database and some observations were also made on English database SUSAS. The variety of possibly effective ways of stress recognition in speech leads to approach very high recognition accuracy of their combination, or of their possible usage for detection of other speaker’s state, which has to be further tested and verified by appropriate databases.

    Feature extraction based on bio-inspired model for robust emotion recognition

    Get PDF
    Emotional state identification is an important issue to achieve more natural speech interactive systems. Ideally, these systems should also be able to work in real environments in which generally exist some kind of noise. Several bio-inspired representations have been applied to artificial systems for speech processing under noise conditions. In this work, an auditory signal representation is used to obtain a novel bio-inspired set of features for emotional speech signals. These characteristics, together with other spectral and prosodic features, are used for emotion recognition under noise conditions. Neural models were trained as classifiers and results were compared to the well-known mel-frequency cepstral coefficients. Results show that using the proposed representations, it is possible to significantly improve the robustness of an emotion recognition system. The results were also validated in a speaker independent scheme and with two emotional speech corpora.Fil: Albornoz, Enrique Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentin

    Gender dependent word-level emotion detection using global spectral speech features

    Get PDF
    In this study, global spectral features extracted from word and sentence levels are studied for speech emotion recognition. MFCC (Mel Frequency Cepstral Coefficient) were used as spectral information for recognition purpose. Global spectral features representing gross statistics such as mean of MFCC are used. This study also examine words at different positions (initial, middle and end) separately in a sentence. Word-level feature extraction is used to analyze emotion recognition performance of words at different positions. Word boundaries are manually identified. Gender dependent and independent models are also studied to analyze the gender impact on emotion recognition performance. Berlin’s Emo-DB (Emotional Database) was used for emotional speech dataset. Performance of different classifiers also been studied. NN (Neural Network), KNN (K-Nearest Neighbor) and LDA (Linear Discriminant Analysis) are included in the classifiers. Anger and neutral emotions were also studied. Results showed that, using all 13 MFCC coefficients provide better classification results than other combinations of MFCC coefficients for the mentioned emotions. Words at initial and ending positions provide more emotion, specific information than words at middle position. Gender dependent models are more efficient than gender independent models. Moreover, female are more efficient than male model and female exhibit emotions better than the male. General, NN performs the worst compared to KNN and LDA in classifying anger and neutral. LDA performs better than KNN almost 15% for gender independent model and almost 25% for gender dependent

    Speech Based Machine Learning Models for Emotional State Recognition and PTSD Detection

    Get PDF
    Recognition of emotional state and diagnosis of trauma related illnesses such as posttraumatic stress disorder (PTSD) using speech signals have been active research topics over the past decade. A typical emotion recognition system consists of three components: speech segmentation, feature extraction and emotion identification. Various speech features have been developed for emotional state recognition which can be divided into three categories, namely, excitation, vocal tract and prosodic. However, the capabilities of different feature categories and advanced machine learning techniques have not been fully explored for emotion recognition and PTSD diagnosis. For PTSD assessment, clinical diagnosis through structured interviews is a widely accepted means of diagnosis, but patients are often embarrassed to get diagnosed at clinics. The speech signal based system is a recently developed alternative. Unfortunately,PTSD speech corpora are limited in size which presents difficulties in training complex diagnostic models. This dissertation proposed sparse coding methods and deep belief network models for emotional state identification and PTSD diagnosis. It also includes an additional transfer learning strategy for PTSD diagnosis. Deep belief networks are complex models that cannot work with small data like the PTSD speech database. Thus, a transfer learning strategy was adopted to mitigate the small data problem. Transfer learning aims to extract knowledge from one or more source tasks and apply the knowledge to a target task with the intention of improving the learning. It has proved to be useful when the target task has limited high quality training data. We evaluated the proposed methods on the speech under simulated and actual stress database (SUSAS) for emotional state recognition and on two PTSD speech databases for PTSD diagnosis. Experimental results and statistical tests showed that the proposed models outperformed most state-of-the-art methods in the literature and are potentially efficient models for emotional state recognition and PTSD diagnosis

    Hybrid Approach for Emotion Classification of Audio Conversation Based on Text and Speech Mining

    Get PDF
    AbstractOne of the greatest challenges in speech technology is estimating the speaker's emotion. Most of the existing approaches concentrate either on audio or text features. In this work, we propose a novel approach for emotion classification of audio conversation based on both speech and text. The novelty in this approach is in the choice of features and the generation of a single feature vector for classification. Our main intention is to increase the accuracy of emotion classification of speech by considering both audio and text features. In this work we use standard methods such as Natural Language Processing, Support Vector Machines, WordNet Affect and SentiWordNet. The dataset for this work have been taken from Semval -2007 and eNTERFACE’05 EMOTION Database

    A combined cepstral distance method for emotional speech recognition

    Get PDF
    Affective computing is not only the direction of reform in artificial intelligence but also exemplification of the advanced intelligent machines. Emotion is the biggest difference between human and machine. If the machine behaves with emotion, then the machine will be accepted by more people. Voice is the most natural and can be easily understood and accepted manner in daily communication. The recognition of emotional voice is an important field of artificial intelligence. However, in recognition of emotions, there often exists the phenomenon that two emotions are particularly vulnerable to confusion. This article presents a combined cepstral distance method in two-group multi-class emotion classification for emotional speech recognition. Cepstral distance combined with speech energy is well used as speech signal endpoint detection in speech recognition. In this work, the use of cepstral distance aims to measure the similarity between frames in emotional signals and in neutral signals. These features are input for directed acyclic graph support vector machine classification. Finally, a two-group classification strategy is adopted to solve confusion in multi-emotion recognition. In the experiments, Chinese mandarin emotion database is used and a large training set (1134 + 378 utterances) ensures a powerful modelling capability for predicting emotion. The experimental results show that cepstral distance increases the recognition rate of emotion sad and can balance the recognition results with eliminating the over fitting. And for the German corpus Berlin emotional speech database, the recognition rate between sad and boring, which are very difficult to distinguish, is up to 95.45%

    Stress and emotion recognition in natural speech in the work and family environments

    Get PDF
    The speech stress and emotion recognition and classification technology has a potential to provide significant benefits to the national and international industry and society in general. The accuracy of an automatic emotion speech and emotion recognition relays heavily on the discrimination power of the characteristic features. This work introduced and examined a number of new linear and nonlinear feature extraction methods for an automatic detection of stress and emotion in speech. The proposed linear feature extraction methods included features derived from the speech spectrograms (SS-CB/BARK/ERB-AE, SS-AF-CB/BARK/ERB-AE, SS-LGF-OFS, SS-ALGF-OFS, SS-SP-ALGF-OFS and SS-sigma-pi), wavelet packets (WP-ALGF-OFS) and the empirical mode decomposition (EMD-AER). The proposed nonlinear feature extraction methods were based on the results of recent laryngological studies and nonlinear modelling of the phonation process. The proposed nonlinear features included the area under the TEO autocorrelation envelope based on different spectral decompositions (TEO-DWT, TEO-WP, TEO-PWP-S and TEO-PWP-G), as well as features representing spectral energy distribution of speech (AUSEES) and glottal waveform (AUSEEG). The proposed features were compared with features based on the classical linear model of speech production including F0, formants, MFCC and glottal time/frequency parameters. Two classifiers GMM and KNN were tested for consistency. The experiments used speech under actual stress from the SUSAS database (7 speakers; 3 female and 4 male) and speech with five naturally expressed emotions (neutral, anger, anxious, dysphoric and happy) from the ORI corpora (71 speakers; 27 female and 44 male). The nonlinear features clearly outperformed all the linear features. The classification results demonstrated consistency with the nonlinear model of the phonation process indicating that the harmonic structure and the spectral distribution of the glottal energy provide the most important cues for stress and emotion recognition in speech. The study also investigated if the automatic emotion recognition can determine differences in emotion expression between parents of depressed adolescents and parents of non-depressed adolescents. It was also investigated if there are differences in emotion expression between mothers and fathers in general. The experiment results indicated that parents of depressed adolescent produce stronger more exaggerated expressions of affect than parents of non-depressed children. And females in general provide easier to discriminate (more exaggerated) expressions of affect than males

    Metodologija estimacije emocionalnih stanja na temelju akustičkih značajki govora

    Get PDF
    U novije vrijeme se sve veća pažnja posvećuje problematici računalne estimacije emocionalnog stanja iz čovjekovog glasa, prvenstveno u kontekstu razvoja sustava za inteligentnu interakciju između čovjeka i računala. U radu je opisana metodologija estimacije po koracima: izvlačenje akustičkih značajki emocionalnog govora, redukcija prostora značajki te estimacija emocionalnih stanja na temelju neke od metoda strojnog učenja. Emocije se tipično reprezentiraju kao diskretna stanja, poput sreće, ljutnje, straha ili gađenja, ili kao dimenzije, najčešće kao razine ugode i pobuđenosti. Pritom se za raspoznavanje diskretnih emocija koriste klasifikacijske metode, a za estimaciju dimenzijskih veličina emocija regresijske. U radu je dan pregled state-of-the-art akustičkih značajki za prepoznavanje emocija te su prikazani rezultati relevantnih radova na ovom području

    Metodologija estimacije emocionalnih stanja na temelju akustičkih značajki govora

    Get PDF
    U novije vrijeme se sve veća pažnja posvećuje problematici računalne estimacije emocionalnog stanja iz čovjekovog glasa, prvenstveno u kontekstu razvoja sustava za inteligentnu interakciju između čovjeka i računala. U radu je opisana metodologija estimacije po koracima: izvlačenje akustičkih značajki emocionalnog govora, redukcija prostora značajki te estimacija emocionalnih stanja na temelju neke od metoda strojnog učenja. Emocije se tipično reprezentiraju kao diskretna stanja, poput sreće, ljutnje, straha ili gađenja, ili kao dimenzije, najčešće kao razine ugode i pobuđenosti. Pritom se za raspoznavanje diskretnih emocija koriste klasifikacijske metode, a za estimaciju dimenzijskih veličina emocija regresijske. U radu je dan pregled state-of-the-art akustičkih značajki za prepoznavanje emocija te su prikazani rezultati relevantnih radova na ovom području
    corecore