47 research outputs found

    A Scalable Multiple Description Scheme for 3D Video Coding Based on the Interlayer Prediction Structure

    Get PDF
    The most recent literature indicates multiple description coding (MDC) as a promising coding approach to handle the problem of video transmission over unreliable networks with different quality and bandwidth constraints. Furthermore, following recent commercial availability of autostereoscopic 3D displays that allow 3D visual data to be viewed without the use of special headgear or glasses, it is anticipated that the applications of 3D video will increase rapidly in the near future. Moving from the concept of spatial MDC, in this paper we introduce some efficient algorithms to obtain 3D substreams that also exploit some form of scalability. These algorithms are then applied to both coded stereo sequences and to depth image-based rendering (DIBR). In these algorithms, we first generate four 3D subsequences by subsampling, and then two of these subsequences are jointly used to form each of the two descriptions. For each description, one of the original subsequences is predicted from the other one via some scalable algorithms, focusing on the inter layer prediction scheme. The proposed algorithms can be implemented as pre- and postprocessing of the standard H.264/SVC coder that remains fully compatible with any standard coder. The experimental results presented show that these algorithms provide excellent results

    Quality-Oriented Mobility Management for Multimedia Content Delivery to Mobile Users

    Get PDF
    The heterogeneous wireless networking environment determined by the latest developments in wireless access technologies promises a high level of communication resources for mobile computational devices. Although the communication resources provided, especially referring to bandwidth, enable multimedia streaming to mobile users, maintaining a high user perceived quality is still a challenging task. The main factors which affect quality in multimedia streaming over wireless networks are mainly the error-prone nature of the wireless channels and the user mobility. These factors determine a high level of dynamics of wireless communication resources, namely variations in throughput and packet loss as well as network availability and delays in delivering the data packets. Under these conditions maintaining a high level of quality, as perceived by the user, requires a quality oriented mobility management scheme. Consequently we propose the Smooth Adaptive Soft-Handover Algorithm, a novel quality oriented handover management scheme which unlike other similar solutions, smoothly transfer the data traffic from one network to another using multiple simultaneous connections. To estimate the capacity of each connection the novel Quality of Multimedia Streaming (QMS) metric is proposed. The QMS metric aims at offering maximum flexibility and efficiency allowing the applications to fine tune the behavior of the handover algorithm. The current simulation-based performance evaluation clearly shows the better performance of the proposed Smooth Adaptive Soft-Handover Algorithm as compared with other handover solutions. The evaluation was performed in various scenarios including multiple mobile hosts performing handover simultaneously, wireless networks with variable overlapping areas, and various network congestion levels

    PiCo: A Domain-Specific Language for Data Analytics Pipelines

    Get PDF
    In the world of Big Data analytics, there is a series of tools aiming at simplifying programming applications to be executed on clusters. Although each tool claims to provide better programming, data and execution models—for which only informal (and often confusing) semantics is generally provided—all share a common under- lying model, namely, the Dataflow model. Using this model as a starting point, it is possible to categorize and analyze almost all aspects about Big Data analytics tools from a high level perspective. This analysis can be considered as a first step toward a formal model to be exploited in the design of a (new) framework for Big Data analytics. By putting clear separations between all levels of abstraction (i.e., from the runtime to the user API), it is easier for a programmer or software designer to avoid mixing low level with high level aspects, as we are often used to see in state-of-the-art Big Data analytics frameworks. From the user-level perspective, we think that a clearer and simple semantics is preferable, together with a strong separation of concerns. For this reason, we use the Dataflow model as a starting point to build a programming environment with a simplified programming model implemented as a Domain-Specific Language, that is on top of a stack of layers that build a prototypical framework for Big Data analytics. The contribution of this thesis is twofold: first, we show that the proposed model is (at least) as general as existing batch and streaming frameworks (e.g., Spark, Flink, Storm, Google Dataflow), thus making it easier to understand high-level data-processing applications written in such frameworks. As result of this analysis, we provide a layered model that can represent tools and applications following the Dataflow paradigm and we show how the analyzed tools fit in each level. Second, we propose a programming environment based on such layered model in the form of a Domain-Specific Language (DSL) for processing data collections, called PiCo (Pipeline Composition). The main entity of this programming model is the Pipeline, basically a DAG-composition of processing elements. This model is intended to give the user an unique interface for both stream and batch processing, hiding completely data management and focusing only on operations, which are represented by Pipeline stages. Our DSL will be built on top of the FastFlow library, exploiting both shared and distributed parallelism, and implemented in C++11/14 with the aim of porting C++ into the Big Data world

    QoE management of HTTP adaptive streaming services

    Get PDF

    Distribuição de vídeo para grupos de utilizadores em redes móveis heterogéneas19

    Get PDF
    The evolutions veri ed in mobile devices capabilities (storage capacity, screen resolution, processor, etc.) over the last years led to a signi cant change in mobile user behavior, with the consumption and creation of multimedia content becoming more common, in particular video tra c. Consequently, mobile operator networks, despite being the target of architectural evolutions and improvements over several parameters (such as capacity, transmission and reception performance, amongst others), also increasingly become more frequently challenged by performance aspects associated to the nature of video tra c, whether by the demanding requirements associated to that service, or by its volume increase in such networks. This Thesis proposes modi cations to the mobile architecture towards a more e cient video broadcasting, de ning and developing mechanisms applicable to the network, or to the mobile terminal. Particularly, heterogeneous networks multicast IP mobility supported scenarios are focused, emphasizing their application over di erent access technologies. The suggested changes are applicable to mobile or static user scenarios, whether it performs the role of receiver or source of the video tra c. Similarly, the de ned mechanisms propose solutions targeting operators with di erent video broadcasting goals, or whose networks have di erent characteristics. The pursued methodology combined an experimental evaluation executed over physical testbeds, with the mathematical evaluation using network simulation, allowing the veri cation of its impact on the optimization of video reception in mobile terminalsA evolução veri cada nas características dos dispositivos moveis (capacidade de armazenamento, resolução do ecrã, processador, etc.) durante os últimos anos levou a uma alteração signi cativa nos comportamentos dos utilizadores, sendo agora comum o consumo e produção de conteúdos multimédia envolvendo terminais móveis, em particular o tráfego vídeo. Consequentemente, as redes de operador móvel, embora tendo também sido alvo constante de evoluções arquitecturais e melhorias em vários parâmetros (tais como capacidade, ritmo de transmissão/recepção, entre outros), vêemse cada vez mais frequentemente desa adas por aspectos de desempenho associados à natureza do tráfego de vídeo, seja pela exigência de requisitos associados a esse serviço, quer pelo aumento do volume do mesmo nesse tipo de redes. Esta Tese propôe alterações à arquitetura móvel para a disseminação de vídeo mais e ciente, de nindo e desenvolvendo mecanismos aplicáveis à rede, ou ao utilizador móvel. Em particular, são focados cenários suportados por IP multicast em redes móveis heterogéneas, isto é, com ênfase na aplicação destes mecanismos sobre diferentes tecnologias de acesso. As alterações sugeridas aplicam-se a cenários de utilizador estático ou móvel, sendo este a fonte ou receptor do tráfego vídeo. Da mesma forma, são propostas soluções tendo em vista operadores com diferentes objectivos de disseminação de vídeo, ou cujas redes têm diferentes características. A metodologia utilizada combinou a avaliação experimental em testbeds físicas com a avaliação matemática em simulações de redes, e permitiu veri car o impacto sobre a optimização da recepção de vídeo em terminais móveisPrograma Doutoral em Telecomunicaçõe

    Quality-of-service management in IP networks

    Get PDF
    Quality of Service (QoS) in Internet Protocol (IF) Networks has been the subject of active research over the past two decades. Integrated Services (IntServ) and Differentiated Services (DiffServ) QoS architectures have emerged as proposed standards for resource allocation in IF Networks. These two QoS architectures support the need for multiple traffic queuing systems to allow for resource partitioning for heterogeneous applications making use of the networks. There have been a number of specifications or proposals for the number of traffic queuing classes (Class of Service (CoS)) that will support integrated services in IF Networks, but none has provided verification in the form of analytical or empirical investigation to prove that its specification or proposal will be optimum. Despite the existence of the two standard QoS architectures and the large volume of research work that has been carried out on IF QoS, its deployment still remains elusive in the Internet. This is not unconnected with the complexities associated with some aspects of the standard QoS architectures. [Continues.

    A European Platform for Distributed Real Time Modelling & Simulation of Emerging Electricity Systems

    Get PDF
    This report presents the proposal for the constitution of a European platform consisting of the federation of real-time modelling and simulation facilities applied to the analysis of emerging electricity systems. Such a platform can be understood as a pan-European distributed laboratory aiming at making use of the best available relevant resources and knowledge for the sake of supporting industry and policy makers and conducting advanced scientific research. The report describes the need for such a platform, with reference to the current status of power systems; the state of the art of the relevant technologies; and the character and format that the platform might take. This integrated distributed laboratory will facilitate the modelling, testing and assessment of power systems beyond the capacities of each single entity, enabling remote access to software and equipment anywhere in the EU, by establishing a real-time interconnection to the available facilities and capabilities within the Member States. Such an infrastructure will support the remote testing of devices, enhance simulation capabilities for large multi-scale and multi-layer systems, while also achieving soft-sharing of expertise in a large knowledge-based virtual environment. Furthermore the platform should offer the possibility of keeping confidential all susceptible data/models/algorithms, enabling the participants to determine which specific data will be shared with other actors. This kind of simulation platform will benefit all actors that need to take decisions in the power system area. This includes national and local authorities, regulators, network operators and utilities, manufacturers, consumers/prosumers. The federation of labs is created through real-time remote access to high-performance computing, data infrastructure and hardware and software components (electrical, electronic, ICT) assured by the interconnection of different labs with a server-cloud architecture where the local computers or machines interact with other labs through dedicated VPN (Virtual Private Network) over the GEANT network (the pan-European research and education network that interconnects Europe’s National Research and Education Networks ). The local VPN servers bridge the local simulation platform at each site and the cloud ensuring the security of the data exchange while offering a better coordination of the communication and the multi-point connection. It is then possible the integration of the different sub-systems (distribution grid, transmission grid, generation, market, and consumer behaviour) with a holistic approach

    Raising the Parallel Abstraction Level for Streaming Analytics Applications

    Get PDF
    In the stream processing domain, applications are represented by graphs of operators arbitrarily connected and filled with their business logic code. The APIs of existing Stream Processing Systems (SPSs) ease the development of transformations that recur in the streaming practice (e.g., filtering, aggregation and joins). In contrast, their parallelism abstractions are quite limited since they provide support to stateless operators only, or when the state is organized in a set of key-value pairs. This paper presents how the parallel patterns methodology can be revisited for sliding-window streaming analytics. Our vision fosters a design process of the application as composition and nesting of ready-to-use patterns provided through a C++17 fluent interface. Our prototype implements the run-time system of the patterns in the FastFlow parallel library expressing thread-based parallelism. The experimental analysis shows interesting outcomes. First, our pattern-based approach allows easy prototyping of different versions of the application, and the programmer can leverage nesting of patterns to increase performance (up to 37% in one of the two considered test-bed cases). Second, our FastFlow implementation outperforms (three times faster) the handmade porting of our patterns in popular JVM-based SPSs. Finally, in the concluding part of this paper, we explore the use of a task-based run-time system, by deriving interesting insights into how to make our patterns library suitable for multi backends

    Fourth ERCIM workshop on e-mobility

    Get PDF
    corecore