10,269 research outputs found

    Splitting Proofs for Interpolation

    Full text link
    We study interpolant extraction from local first-order refutations. We present a new theoretical perspective on interpolation based on clearly separating the condition on logical strength of the formula from the requirement on the com- mon signature. This allows us to highlight the space of all interpolants that can be extracted from a refutation as a space of simple choices on how to split the refuta- tion into two parts. We use this new insight to develop an algorithm for extracting interpolants which are linear in the size of the input refutation and can be further optimized using metrics such as number of non-logical symbols or quantifiers. We implemented the new algorithm in first-order theorem prover VAMPIRE and evaluated it on a large number of examples coming from the first-order proving community. Our experiments give practical evidence that our work improves the state-of-the-art in first-order interpolation.Comment: 26th Conference on Automated Deduction, 201

    Efficient Generation of Craig Interpolants in Satisfiability Modulo Theories

    Full text link
    The problem of computing Craig Interpolants has recently received a lot of interest. In this paper, we address the problem of efficient generation of interpolants for some important fragments of first order logic, which are amenable for effective decision procedures, called Satisfiability Modulo Theory solvers. We make the following contributions. First, we provide interpolation procedures for several basic theories of interest: the theories of linear arithmetic over the rationals, difference logic over rationals and integers, and UTVPI over rationals and integers. Second, we define a novel approach to interpolate combinations of theories, that applies to the Delayed Theory Combination approach. Efficiency is ensured by the fact that the proposed interpolation algorithms extend state of the art algorithms for Satisfiability Modulo Theories. Our experimental evaluation shows that the MathSAT SMT solver can produce interpolants with minor overhead in search, and much more efficiently than other competitor solvers.Comment: submitted to ACM Transactions on Computational Logic (TOCL

    Efficient Interpolant Generation in Satisfiability Modulo Theories

    Get PDF
    The problem of computing Craig Interpolants for propositional (SAT) formulas has recently received a lot of interest, mainly for its applications in formal verification. However, propositional logic is often not expressive enough for representing many interesting verification problems, which can be more naturally addressed in the framework of Satisfiability Modulo Theories, SMT. Although {some} works have addressed the topic of generating interpolants in SMT, the techniques and tools that are currently available have some limitations, and their performance still does not exploit the full power of current state-of-the-art SMT solvers. In this paper we try to close this gap. We present several techniques for interpolant generation in SMT which overcome the limitations of the current generators mentioned above, and which take full advantage of state-of-the-art SMT technology. These novel techniques can lead to substantial performance improvements wrt. the currently available tools. We support our claims with an extensive experimental evaluation of our implementation of the proposed techniques in the MathSAT SMT solver

    Synthesizing Multiple Boolean Functions using Interpolation on a Single Proof

    Full text link
    It is often difficult to correctly implement a Boolean controller for a complex system, especially when concurrency is involved. Yet, it may be easy to formally specify a controller. For instance, for a pipelined processor it suffices to state that the visible behavior of the pipelined system should be identical to a non-pipelined reference system (Burch-Dill paradigm). We present a novel procedure to efficiently synthesize multiple Boolean control signals from a specification given as a quantified first-order formula (with a specific quantifier structure). Our approach uses uninterpreted functions to abstract details of the design. We construct an unsatisfiable SMT formula from the given specification. Then, from just one proof of unsatisfiability, we use a variant of Craig interpolation to compute multiple coordinated interpolants that implement the Boolean control signals. Our method avoids iterative learning and back-substitution of the control functions. We applied our approach to synthesize a controller for a simple two-stage pipelined processor, and present first experimental results.Comment: This paper originally appeared in FMCAD 2013, http://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD13/index.shtml. This version includes an appendix that is missing in the conference versio

    Interpolation Properties and SAT-based Model Checking

    Full text link
    Craig interpolation is a widespread method in verification, with important applications such as Predicate Abstraction, CounterExample Guided Abstraction Refinement and Lazy Abstraction With Interpolants. Most state-of-the-art model checking techniques based on interpolation require collections of interpolants to satisfy particular properties, to which we refer as "collectives"; they do not hold in general for all interpolation systems and have to be established for each particular system and verification environment. Nevertheless, no systematic approach exists that correlates the individual interpolation systems and compares the necessary collectives. This paper proposes a uniform framework, which encompasses (and generalizes) the most common collectives exploited in verification. We use it for a systematic study of the collectives and of the constraints they pose on propositional interpolation systems used in SAT-based model checking
    • …
    corecore