126 research outputs found

    Symplectic integrators for spin systems

    Get PDF
    We present a symplectic integrator, based on the canonical midpoint rule, for classical spin systems in which each spin is a unit vector in R3\mathbb{R}^3. Unlike splitting methods, it is defined for all Hamiltonians, and is O(3)O(3)-equivariant. It is a rare example of a generating function for symplectic maps of a noncanonical phase space. It yields an integrable discretization of the reduced motion of a free rigid body

    Computational micromagnetics with Commics

    Get PDF
    We present our open-source Python module Commics for the study of the magnetization dynamics in ferromagnetic materials via micromagnetic simulations. It implements state-of-the-art unconditionally convergent finite element methods for the numerical integration of the Landau–Lifshitz–Gilbert equation. The implementation is based on the multiphysics finite element software Netgen/NGSolve. The simulation scripts are written in Python, which leads to very readable code and direct access to extensive post-processing. Together with documentation and example scripts, the code is freely available on GitLab. Program summary: Program title: Commics Program Files doi: http://dx.doi.org/10.17632/29wv9h78h7.1 Licensing provisions: GPLv3 Programming language: Python3 Nature of problem: Numerical integration of the Landau–Lifshitz–Gilbert equation in three space dimensions Solution method: Tangent plane scheme [1]: original first-order version, projection-free version, second-order version, efficient second-order IMEX version; Midpoint scheme [2]: original version, IMEX version; Magnetostatic Maxwell equations are treated by the hybrid FEM–BEM method [3] Additional comments including restrictions and unusual features: An installation of the finite element software Netgen/NGSolve and an installation of the boundary element library BEM++ are required. References [1] F. Alouges. A new finite element scheme for Landau–Lifchitz equations. Discrete Contin. Dyn. Syst. Ser. S, 1(2):187–196, 2008. [2] S. Bartels and A. Prohl. Convergence of an implicit finite element method for the Landau–Lifshitz–Gilbert equation. SIAM J. Numer. Anal., 44(4):1405–1419, 2006. [3] D. R. Fredkin and T. R. Koehler. Hybrid method for computing demagnetization fields. IEEE Trans. Magn., 26(2):415–417, 1990

    A symplectic integration method for elastic filaments

    Full text link
    A new method is proposed for integrating the equations of motion of an elastic filament. In the standard finite-difference and finite-element formulations the continuum equations of motion are discretized in space and time, but it is then difficult to ensure that the Hamiltonian structure of the exact equations is preserved. Here we discretize the Hamiltonian itself, expressed as a line integral over the contour of the filament. This discrete representation of the continuum filament can then be integrated by one of the explicit symplectic integrators frequently used in molecular dynamics. The model systematically approximates the continuum partial differential equations, but has the same level of computational complexity as molecular dynamics and is constraint free. Numerical tests show that the algorithm is much more stable than a finite-difference formulation and can be used for high aspect ratio filaments, such as actin

    On the Accuracy of Explicit Finite-Volume Schemes for Fluctuating Hydrodynamics

    Get PDF
    This paper describes the development and analysis of finite-volume methods for the Landau–Lifshitz Navier–Stokes (LLNS) equations and related stochastic partial differential equations in fluid dynamics. The LLNS equations incorporate thermal fluctuations into macroscopic hydrodynamics by the addition of white noise fluxes whose magnitudes are set by a fluctuation-dissipation relation. Originally derived for equilibrium fluctuations, the LLNS equations have also been shown to be accurate for nonequilibrium systems. Previous studies of numerical methods for the LLNS equations focused primarily on measuring variances and correlations computed at equilibrium and for selected nonequilibrium flows. In this paper, we introduce a more systematic approach based on studying discrete equilibrium structure factors for a broad class of explicit linear finite-volume schemes. This new approach provides a better characterization of the accuracy of a spatiotemporal discretization as a function of wavenumber and frequency, allowing us to distinguish between behavior at long wavelengths, where accuracy is a prime concern, and short wavelengths, where stability concerns are of greater importance. We use this analysis to develop a specialized third-order Runge–Kutta scheme that minimizes the temporal integration error in the discrete structure factor at long wavelengths for the one-dimensional linearized LLNS equations.Together with a novel method for discretizing the stochastic stress tensor in dimension larger than one, our improved temporal integrator yields a scheme for the three-dimensional equations that satisfies a discrete fluctuation-dissipation balance for small time steps and is also sufficiently accurate even for time steps close to the stability limit

    Modelling and numerical analysis of energy-dissipating systems with nonlocal free energy

    Get PDF
    The broad objective of this thesis is to design finite-volume schemes for a family of energy-dissipating systems. All the systems studied in this thesis share a common property: they are driven by an energy that decreases as the system evolves. Such decrease is produced by a dissipation mechanism, which ensures that the system eventually reaches a steady state where the energy is minimised. The numerical schemes presented here are designed to discretely preserve the dissipation of the energy, leading to more accurate and cost-effective simulations. Most of the material in this thesis is based on the publications [16, 54, 65, 66, 243]. The research content is structured in three parts. First, Part II presents well-balanced first-, second- and high-order finite-volume schemes for a general class of hydrodynamic systems with linear and nonlinear damping. These well-balanced schemes preserve stationary states at machine precision, while discretely preserving the dissipation of the discrete free energy for first- and second-order accuracy. Second, Part III focuses on finite-volume schemes for the Cahn-Hilliard equation that unconditionally and discretely satisfy the boundedness of the phase eld and the free-energy dissipation. In addition, our Cahn-Hilliard scheme is employed as an image inpainting filter before passing damaged images into a classification neural network, leading to a significant improvement of damaged-image prediction. Third, Part IV introduces nite-volume schemes to solve stochastic gradient-flow equations. Such equations are of crucial importance within the framework of fluctuating hydrodynamics and dynamic density functional theory. The main advantages of these schemes are the preservation of non-negative densities in the presence of noise and the accurate reproduction of the statistical properties of the physical systems. All these fi nite-volume schemes are complemented with prototypical examples from relevant applications, which highlight the bene fit of our algorithms to elucidate some of the unknown analytical results.Open Acces
    • …
    corecore