452 research outputs found

    A 16-b 10Msample/s Split-Interleaved Analog to Digital Converter

    Get PDF
    This work describes the integrated circuit design of a 16-bit, 10Msample/sec, combination ‘split’ interleaved analog to digital converter. Time interleaving of analog to digital converters has been used successfully for many years as a technique to achieve faster speeds using multiple identical converters. However, efforts to achieve higher resolutions with this technique have been difficult due to the precise matching required of the converter channels. The most troublesome errors in these types of converters are gain, offset and timing differences between channels. The ‘split ADC’ is a new concept that allows the use of a deterministic, digital, self calibrating algorithm. In this approach, an ADC is split into two paths, producing two output codes from the same input sample. The difference of these two codes is used as the calibration signal for an LMS error estimation algorithm that drives the difference error to zero. The ADC is calibrated when the codes are equal and the output is taken as the average of the two codes. The ‘split’ ADC concept and interleaved architecture are combined in this IC design to form the core of a high speed, high resolution, and self-calibrating ADC system. The dual outputs are used to drive a digital calibration engine to correct for the channel mismatch errors. This system has the speed benefits of interleaving while maintaining high resolution. The hardware for the algorithm as well as the ADC can be implemented in a standard 0.25um CMOS process, resulting in a relatively inexpensive solution. This work is supported by grants from Analog Devices Incorporated (ADI) and the National Science Foundation (NSF)

    All Digital, Background Calibration for Time-Interleaved and Successive Approximation Register Analog-to-Digital Converters

    Get PDF
    The growth of digital systems underscores the need to convert analog information to the digital domain at high speeds and with great accuracy. Analog-to-Digital Converter (ADC) calibration is often a limiting factor, requiring longer calibration times to achieve higher accuracy. The goal of this dissertation is to perform a fully digital background calibration using an arbitrary input signal for A/D converters. The work presented here adapts the cyclic Split-ADC calibration method to the time interleaved (TI) and successive approximation register (SAR) architectures. The TI architecture has three types of linear mismatch errors: offset, gain and aperture time delay. By correcting all three mismatch errors in the digital domain, each converter is capable of operating at the fastest speed allowed by the process technology. The total number of correction parameters required for calibration is dependent on the interleaving ratio, M. To adapt the Split-ADC method to a TI system, 2M+1 half-sized converters are required to estimate 3(2M+1) correction parameters. This thesis presents a 4:1 Split-TI converter that achieves full convergence in less than 400,000 samples. The SAR architecture employs a binary weight capacitor array to convert analog inputs into digital output codes. Mismatch in the capacitor weights results in non-linear distortion error. By adding redundant bits and dividing the array into individual unit capacitors, the Split-SAR method can estimate the mismatch and correct the digital output code. The results from this work show a reduction in the non-linear distortion with the ability to converge in less than 750,000 samples

    DIGITALLY ASSISTED TECHNIQUES FOR NYQUIST RATE ANALOG-to-DIGITAL CONVERTERS

    Get PDF
    With the advance of technology and rapid growth of digital systems, low power high speed analog-to-digital converters with great accuracy are in demand. To achieve high effective number of bits Analog-to-Digital Converter(ADC) calibration as a time consuming process is a potential bottleneck for designs. This dissertation presentsa fully digital background calibration algorithm for a 7-bit redundant flash ADC using split structure and look-up table based correction. Redundant comparators are used in the flash ADC design of this work in order to tolerate large offset voltages while minimizing signal input capacitance. The split ADC structure helps by eliminating the unknown input signal from the calibration path. The flash ADC has been designed in 180nm IBM CMOS technology and fabricated through MOSIS. This work was supported by Analog Devices, Wilmington,MA. While much research on ADC design has concentrated on increasing resolution and sample rate, there are many applications (e.g. biomedical devices and sensor networks) that do not require high performance but do require low power energy efficient ADCs. This dissertation also explores on design of a low quiescent current 100kSps Successive Approximation (SAR) ADC that has been used as an error detection ADC for an automotive application in 350nm CD (CMOS-DMOS) technology. This work was supported by ON Semiconductor Corp, East Greenwich,RI

    Background Calibration of a 6-Bit 1Gsps Split-Flash ADC

    Get PDF
    In this MS thesis, a redundant flash analog-to-digital converter (ADC) using a ``Split-ADC\u27 calibration structure and lookup-table-based correction is presented. ADC input capacitance is minimized through use of small, power efficient comparators; redundancy is used to tolerate the resulting large offset voltages. Correction of errors and estimation of calibration parameters are performed continuously in the background in the digital domain. The proposed flash ADC has an effective-number-of-bits (ENOB) of 6-bits and is designed for a target sampling rate of 1Gs/s in 180nm CMOS. The calibration algorithm described has been simulated in MATLAB and an FPGA implementation has been investigated

    Digital Background Self-Calibration Technique for Compensating Transition Offsets in Reference-less Flash ADCs

    Get PDF
    This Dissertation focusses on proving that background calibration using adaptive algorithms are low-cost, stable and effective methods for obtaining high accuracy in flash A/D converters. An integrated reference-less 3-bit flash ADC circuit has been successfully designed and taped out in UMC 180 nm CMOS technology in order to prove the efficiency of our proposed background calibration. References for ADC transitions have been virtually implemented built-in in the comparators dynamic-latch topology by a controlled mismatch added to each comparator input front-end. An external very simple DAC block (calibration bank) allows control the quantity of mismatch added in each comparator front-end and, therefore, compensate the offset of its effective transition with respect to the nominal value. In order to assist to the estimation of the offset of the prototype comparators, an auxiliary A/D converter with higher resolution and lower conversion speed than the flash ADC is used: a 6-bit capacitive-DAC SAR type. Special care in synchronization of analogue sampling instant in both ADCs has been taken into account. In this thesis, a criterion to identify the optimum parameters of the flash ADC design with adaptive background calibration has been set. With this criterion, the best choice for dynamic latch architecture, calibration bank resolution and flash ADC resolution are selected. The performance of the calibration algorithm have been tested, providing great programmability to the digital processor that implements the algorithm, allowing to choose the algorithm limits, accuracy and quantization errors in the arithmetic. Further, systematic controlled offset can be forced in the comparators of the flash ADC in order to have a more exhaustive test of calibration

    A Highly Digital VCO-Based ADC With Lookup-Table-Based Background Calibration

    Get PDF
    CMOS technology scaling has enabled dramatic improvement for digital circuits both in terms of speed and power efficiency. However, most traditional analog-to-digital converter (ADC) architectures are challenged by ever-decreasing supply voltage. The improvement in time resolution enabled by increased digital speeds drives design towards time-domain architectures such as voltage-controlled-oscillator (VCO) based ADCs. The main challenge in VCO-based ADC design is mitigating the nonlinearity of VCO Voltage-to-frequency (V-to-f) characteristics. Achieving signal-to-noise ratio (SNR) performance better than 40dB requires some form of calibration, which can be realized by analog or digital techniques, or some combination. This dissertation proposes a highly digital, reconfigurable VCO-based ADC with lookup-table (LUT) based background calibration based on split ADC architecture. Each of the two split channels, ADC A and B , contains two VCOs in a differential configuration. This helps alleviate even-order distortions as well as increase the dynamic range. A digital controller on chip can reconfigure the ADCs\u27 sampling rates and resolutions to adapt to various application scenarios. Different types of input signals can be used to train the ADC’s LUT parameters through the simple, anti-aliasing continuous-time input to achieve target resolution. The chip is fabricated in a 180 nm CMOS process, and the active area of analog and digital circuits is 0.09 and 0.16mm^2, respectively. Power consumption of the core ADC function is 25 mW. Measured results for this prototype design with 12-b resolution show ENOB improves from uncorrected 5-b to 11.5-b with calibration time within 200 ms (780K conversions at 5 MSps sample rate)
    • …
    corecore