1,522 research outputs found

    Deterministic Constructions for Large Girth Protograph LDPC Codes

    Full text link
    The bit-error threshold of the standard ensemble of Low Density Parity Check (LDPC) codes is known to be close to capacity, if there is a non-zero fraction of degree-two bit nodes. However, the degree-two bit nodes preclude the possibility of a block-error threshold. Interestingly, LDPC codes constructed using protographs allow the possibility of having both degree-two bit nodes and a block-error threshold. In this paper, we analyze density evolution for protograph LDPC codes over the binary erasure channel and show that their bit-error probability decreases double exponentially with the number of iterations when the erasure probability is below the bit-error threshold and long chain of degree-two variable nodes are avoided in the protograph. We present deterministic constructions of such protograph LDPC codes with girth logarithmic in blocklength, resulting in an exponential fall in bit-error probability below the threshold. We provide optimized protographs, whose block-error thresholds are better than that of the standard ensemble with minimum bit-node degree three. These protograph LDPC codes are theoretically of great interest, and have applications, for instance, in coding with strong secrecy over wiretap channels.Comment: 5 pages, 2 figures; To appear in ISIT 2013; Minor changes in presentatio

    Spatially Coupled LDPC Codes for Decode-and-Forward in Erasure Relay Channel

    Full text link
    We consider spatially-coupled protograph-based LDPC codes for the three terminal erasure relay channel. It is observed that BP threshold value, the maximal erasure probability of the channel for which decoding error probability converges to zero, of spatially-coupled codes, in particular spatially-coupled MacKay-Neal code, is close to the theoretical limit for the relay channel. Empirical results suggest that spatially-coupled protograph-based LDPC codes have great potential to achieve theoretical limit of a general relay channel.Comment: 7 pages, extended version of ISIT201

    Generalized Stability Condition for Generalized and Doubly-Generalized LDPC Codes

    Full text link
    In this paper, the stability condition for low-density parity-check (LDPC) codes on the binary erasure channel (BEC) is extended to generalized LDPC (GLDPC) codes and doublygeneralized LDPC (D-GLDPC) codes. It is proved that, in both cases, the stability condition only involves the component codes with minimum distance 2. The stability condition for GLDPC codes is always expressed as an upper bound to the decoding threshold. This is not possible for D-GLDPC codes, unless all the generalized variable nodes have minimum distance at least 3. Furthermore, a condition called derivative matching is defined in the paper. This condition is sufficient for a GLDPC or DGLDPC code to achieve the stability condition with equality. If this condition is satisfied, the threshold of D-GLDPC codes (whose generalized variable nodes have all minimum distance at least 3) and GLDPC codes can be expressed in closed form.Comment: 5 pages, 2 figures, to appear in Proc. of IEEE ISIT 200

    Spectral Shape of Doubly-Generalized LDPC Codes: Efficient and Exact Evaluation

    Full text link
    This paper analyzes the asymptotic exponent of the weight spectrum for irregular doubly-generalized LDPC (D-GLDPC) codes. In the process, an efficient numerical technique for its evaluation is presented, involving the solution of a 4 x 4 system of polynomial equations. The expression is consistent with previous results, including the case where the normalized weight or stopping set size tends to zero. The spectral shape is shown to admit a particularly simple form in the special case where all variable nodes are repetition codes of the same degree, a case which includes Tanner codes; for this case it is also shown how certain symmetry properties of the local weight distribution at the CNs induce a symmetry in the overall weight spectral shape function. Finally, using these new results, weight and stopping set size spectral shapes are evaluated for some example generalized and doubly-generalized LDPC code ensembles.Comment: 17 pages, 6 figures. To appear in IEEE Transactions on Information Theor
    • …
    corecore