139,719 research outputs found

    The VC-Dimension of Graphs with Respect to k-Connected Subgraphs

    Get PDF
    We study the VC-dimension of the set system on the vertex set of some graph which is induced by the family of its kk-connected subgraphs. In particular, we give tight upper and lower bounds for the VC-dimension. Moreover, we show that computing the VC-dimension is NP\mathsf{NP}-complete and that it remains NP\mathsf{NP}-complete for split graphs and for some subclasses of planar bipartite graphs in the cases k=1k = 1 and k=2k = 2. On the positive side, we observe it can be decided in linear time for graphs of bounded clique-width

    Automorphism Groups of Geometrically Represented Graphs

    Full text link
    We describe a technique to determine the automorphism group of a geometrically represented graph, by understanding the structure of the induced action on all geometric representations. Using this, we characterize automorphism groups of interval, permutation and circle graphs. We combine techniques from group theory (products, homomorphisms, actions) with data structures from computer science (PQ-trees, split trees, modular trees) that encode all geometric representations. We prove that interval graphs have the same automorphism groups as trees, and for a given interval graph, we construct a tree with the same automorphism group which answers a question of Hanlon [Trans. Amer. Math. Soc 272(2), 1982]. For permutation and circle graphs, we give an inductive characterization by semidirect and wreath products. We also prove that every abstract group can be realized by the automorphism group of a comparability graph/poset of the dimension at most four

    Homology surgery and invariants of 3-manifolds

    Full text link
    We introduce a homology surgery problem in dimension 3 which has the property that the vanishing of its algebraic obstruction leads to a canonical class of \pi-algebraically-split links in 3-manifolds with fundamental group \pi . Using this class of links, we define a theory of finite type invariants of 3-manifolds in such a way that invariants of degree 0 are precisely those of conventional algebraic topology and surgery theory. When finite type invariants are reformulated in terms of clovers, we deduce upper bounds for the number of invariants in terms of \pi-decorated trivalent graphs. We also consider an associated notion of surgery equivalence of \pi-algebraically split links and prove a classification theorem using a generalization of Milnor's \mu-invariants to this class of links.Comment: Published in Geometry and Topology at http://www.maths.warwick.ac.uk/gt/GTVol5/paper18.abs.htm

    Clique versus Independent Set

    Get PDF
    Yannakakis' Clique versus Independent Set problem (CL-IS) in communication complexity asks for the minimum number of cuts separating cliques from stable sets in a graph, called CS-separator. Yannakakis provides a quasi-polynomial CS-separator, i.e. of size O(nlogn)O(n^{\log n}), and addresses the problem of finding a polynomial CS-separator. This question is still open even for perfect graphs. We show that a polynomial CS-separator almost surely exists for random graphs. Besides, if H is a split graph (i.e. has a vertex-partition into a clique and a stable set) then there exists a constant cHc_H for which we find a O(ncH)O(n^{c_H}) CS-separator on the class of H-free graphs. This generalizes a result of Yannakakis on comparability graphs. We also provide a O(nck)O(n^{c_k}) CS-separator on the class of graphs without induced path of length k and its complement. Observe that on one side, cHc_H is of order O(HlogH)O(|H| \log |H|) resulting from Vapnik-Chervonenkis dimension, and on the other side, ckc_k is exponential. One of the main reason why Yannakakis' CL-IS problem is fascinating is that it admits equivalent formulations. Our main result in this respect is to show that a polynomial CS-separator is equivalent to the polynomial Alon-Saks-Seymour Conjecture, asserting that if a graph has an edge-partition into k complete bipartite graphs, then its chromatic number is polynomially bounded in terms of k. We also show that the classical approach to the stubborn problem (arising in CSP) which consists in covering the set of all solutions by O(nlogn)O(n^{\log n}) instances of 2-SAT is again equivalent to the existence of a polynomial CS-separator

    Locating-dominating sets in twin-free graphs

    Full text link
    A locating-dominating set of a graph GG is a dominating set DD of GG with the additional property that every two distinct vertices outside DD have distinct neighbors in DD; that is, for distinct vertices uu and vv outside DD, N(u)DN(v)DN(u) \cap D \ne N(v) \cap D where N(u)N(u) denotes the open neighborhood of uu. A graph is twin-free if every two distinct vertices have distinct open and closed neighborhoods. The location-domination number of GG, denoted γL(G)\gamma_L(G), is the minimum cardinality of a locating-dominating set in GG. It is conjectured [D. Garijo, A. Gonz\'alez and A. M\'arquez. The difference between the metric dimension and the determining number of a graph. Applied Mathematics and Computation 249 (2014), 487--501] that if GG is a twin-free graph of order nn without isolated vertices, then γL(G)n2\gamma_L(G)\le \frac{n}{2}. We prove the general bound γL(G)2n3\gamma_L(G)\le \frac{2n}{3}, slightly improving over the 2n3+1\lfloor\frac{2n}{3}\rfloor+1 bound of Garijo et al. We then provide constructions of graphs reaching the n2\frac{n}{2} bound, showing that if the conjecture is true, the family of extremal graphs is a very rich one. Moreover, we characterize the trees GG that are extremal for this bound. We finally prove the conjecture for split graphs and co-bipartite graphs.Comment: 11 pages; 4 figure

    The local metric dimension of split and unicyclic graphs

    Get PDF
    A set W is called a local resolving set of G if the distance of u and v to some elements of W are distinct for every two adjacent vertices u and v in G.  The local metric dimension of G is the minimum cardinality of a local resolving set of G.  A connected graph G is called a split graph if V(G) can be partitioned into two subsets V1 and V2 where an induced subgraph of G by V1 and V2 is a complete graph and an independent set, respectively.  We also consider a graph, namely the unicyclic graph which is a connected graph containing exactly one cycle.  In this paper, we provide a general sharp bounds of local metric dimension of split graph.  We also determine an exact value of local metric dimension of any unicyclic graphs

    The (weighted) metric dimension of graphs : hard and easy cases

    Get PDF
    Given an input undirected graph G=(V,E), we say that a vertex l separates u from v (where u,v ¿ V) if the distance between u and l differs from the distance from v to l. A set of vertices L¿V is a feasible solution if for every pair of vertices, u,v ¿ V (u¿v), there is a vertex l ¿ L that separates u from v. Such a feasible solution is called a landmark set, and the metric dimension of a graph is the minimum cardinality of a landmark set. Here, we extend this well-studied problem to the case where each vertex v has a non-negative cost, and the goal is to find a feasible solution with a minimum total cost. This weighted version is NP-hard since the unweighted variant is known to be NP-hard. We show polynomial time algorithms for the cases where G is a path, a tree, a cycle, a cograph, a k-edge-augmented tree (that is, a tree with additional k edges) for a constant value of k, and a (not necessarily complete) wheel. The results for paths, trees, cycles, and complete wheels extend known polynomial time algorithms for the unweighted version, whereas the other results are the first known polynomial time algorithms for these classes of graphs even for the unweighted version. Next, we extend the set of graph classes for which computing the unweighted metric dimension of a graph is known to be NP-hard. We show that for split graphs, bipartite graphs, co-bipartite graphs, and line graphs of bipartite graphs, the problem of computing the unweighted metric dimension of the graph is NP-hard
    corecore