9,754 research outputs found

    Computing a Compact Spline Representation of the Medial Axis Transform of a 2D Shape

    Full text link
    We present a full pipeline for computing the medial axis transform of an arbitrary 2D shape. The instability of the medial axis transform is overcome by a pruning algorithm guided by a user-defined Hausdorff distance threshold. The stable medial axis transform is then approximated by spline curves in 3D to produce a smooth and compact representation. These spline curves are computed by minimizing the approximation error between the input shape and the shape represented by the medial axis transform. Our results on various 2D shapes suggest that our method is practical and effective, and yields faithful and compact representations of medial axis transforms of 2D shapes.Comment: GMP14 (Geometric Modeling and Processing

    Optimized normal and distance matching for heterogeneous object modeling

    Get PDF
    This paper presents a new optimization methodology of material blending for heterogeneous object modeling by matching the material governing features for designing a heterogeneous object. The proposed method establishes point-to-point correspondence represented by a set of connecting lines between two material directrices. To blend the material features between the directrices, a heuristic optimization method developed with the objective is to maximize the sum of the inner products of the unit normals at the end points of the connecting lines and minimize the sum of the lengths of connecting lines. The geometric features with material information are matched to generate non-self-intersecting and non-twisted connecting surfaces. By subdividing the connecting lines into equal number of segments, a series of intermediate piecewise curves are generated to represent the material metamorphosis between the governing material features. Alternatively, a dynamic programming approach developed in our earlier work is presented for comparison purposes. Result and computational efficiency of the proposed heuristic method is also compared with earlier techniques in the literature. Computer interface implementation and illustrative examples are also presented in this paper

    Reverse engineering of CAD models via clustering and approximate implicitization

    Full text link
    In applications like computer aided design, geometric models are often represented numerically as polynomial splines or NURBS, even when they originate from primitive geometry. For purposes such as redesign and isogeometric analysis, it is of interest to extract information about the underlying geometry through reverse engineering. In this work we develop a novel method to determine these primitive shapes by combining clustering analysis with approximate implicitization. The proposed method is automatic and can recover algebraic hypersurfaces of any degree in any dimension. In exact arithmetic, the algorithm returns exact results. All the required parameters, such as the implicit degree of the patches and the number of clusters of the model, are inferred using numerical approaches in order to obtain an algorithm that requires as little manual input as possible. The effectiveness, efficiency and robustness of the method are shown both in a theoretical analysis and in numerical examples implemented in Python

    Parametric Regression on the Grassmannian

    Get PDF
    We address the problem of fitting parametric curves on the Grassmann manifold for the purpose of intrinsic parametric regression. As customary in the literature, we start from the energy minimization formulation of linear least-squares in Euclidean spaces and generalize this concept to general nonflat Riemannian manifolds, following an optimal-control point of view. We then specialize this idea to the Grassmann manifold and demonstrate that it yields a simple, extensible and easy-to-implement solution to the parametric regression problem. In fact, it allows us to extend the basic geodesic model to (1) a time-warped variant and (2) cubic splines. We demonstrate the utility of the proposed solution on different vision problems, such as shape regression as a function of age, traffic-speed estimation and crowd-counting from surveillance video clips. Most notably, these problems can be conveniently solved within the same framework without any specifically-tailored steps along the processing pipeline.Comment: 14 pages, 11 figure
    corecore