991 research outputs found

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Stratified decision forests for accurate anatomical landmark localization in cardiac images

    Get PDF
    Accurate localization of anatomical landmarks is an important step in medical imaging, as it provides useful prior information for subsequent image analysis and acquisition methods. It is particularly useful for initialization of automatic image analysis tools (e.g. segmentation and registration) and detection of scan planes for automated image acquisition. Landmark localization has been commonly performed using learning based approaches, such as classifier and/or regressor models. However, trained models may not generalize well in heterogeneous datasets when the images contain large differences due to size, pose and shape variations of organs. To learn more data-adaptive and patient specific models, we propose a novel stratification based training model, and demonstrate its use in a decision forest. The proposed approach does not require any additional training information compared to the standard model training procedure and can be easily integrated into any decision tree framework. The proposed method is evaluated on 1080 3D highresolution and 90 multi-stack 2D cardiac cine MR images. The experiments show that the proposed method achieves state-of-theart landmark localization accuracy and outperforms standard regression and classification based approaches. Additionally, the proposed method is used in a multi-atlas segmentation to create a fully automatic segmentation pipeline, and the results show that it achieves state-of-the-art segmentation accuracy

    Atlas-Based Prostate Segmentation Using an Hybrid Registration

    Full text link
    Purpose: This paper presents the preliminary results of a semi-automatic method for prostate segmentation of Magnetic Resonance Images (MRI) which aims to be incorporated in a navigation system for prostate brachytherapy. Methods: The method is based on the registration of an anatomical atlas computed from a population of 18 MRI exams onto a patient image. An hybrid registration framework which couples an intensity-based registration with a robust point-matching algorithm is used for both atlas building and atlas registration. Results: The method has been validated on the same dataset that the one used to construct the atlas using the "leave-one-out method". Results gives a mean error of 3.39 mm and a standard deviation of 1.95 mm with respect to expert segmentations. Conclusions: We think that this segmentation tool may be a very valuable help to the clinician for routine quantitative image exploitation.Comment: International Journal of Computer Assisted Radiology and Surgery (2008) 000-99

    Three-dimensional morphanalysis of the face.

    Get PDF
    The aim of the work reported in this thesis was to determine the extent to which orthogonal two-dimensional morphanalytic (universally relatable) craniofacial imaging methods can be extended into the realm of computer-based three-dimensional imaging. New methods are presented for capturing universally relatable laser-video surface data, for inter-relating facial surface scans and for constructing probabilistic facial averages. Universally relatable surface scans are captured using the fixed relations principle com- bined with a new laser-video scanner calibration method. Inter- subject comparison of facial surface scans is achieved using inter- active feature labelling and warping methods. These methods have been extended to groups of subjects to allow the construction of three-dimensional probabilistic facial averages. The potential of universally relatable facial surface data for applications such as growth studies and patient assessment is demonstrated. In addition, new methods for scattered data interpolation, for controlling overlap in image warping and a fast, high-resolution method for simulating craniofacial surgery are described. The results demonstrate that it is not only possible to extend universally relatable imaging into three dimensions, but that the extension also enhances the established methods, providing a wide range of new applications

    Towards multiple 3D bone surface identification and reconstruction using few 2D X-ray images for intraoperative applications

    Get PDF
    This article discusses a possible method to use a small number, e.g. 5, of conventional 2D X-ray images to reconstruct multiple 3D bone surfaces intraoperatively. Each bone’s edge contours in X-ray images are automatically identified. Sparse 3D landmark points of each bone are automatically reconstructed by pairing the 2D X-ray images. The reconstructed landmark point distribution on a surface is approximately optimal covering main characteristics of the surface. A statistical shape model, dense point distribution model (DPDM), is then used to fit the reconstructed optimal landmarks vertices to reconstruct a full surface of each bone separately. The reconstructed surfaces can then be visualised and manipulated by surgeons or used by surgical robotic systems

    Detection of anatomical structures in medical datasets

    Get PDF
    Detection and localisation of anatomical structures is extremely helpful for many image analysis algorithms. This thesis is concerned with the automatic identification of landmark points, anatomical regions and vessel centre lines in three-dimensional medical datasets. We examine how machine learning and atlas-based ideas may be combined to produce efficient, context-aware algorithms. For the problem of anatomical landmark detection, we develop an analog to the idea of autocontext, termed atlas location autocontext, whereby spatial context is iteratively learnt by the machine learning algorithm as part of a feedback loop. We then extend our anatomical landmark detection algorithm from Computed Tomography to Magnetic Resonance images, using image features based on histograms of oriented gradients. A cross-modality landmark detector is demonstrated using unsigned gradient orientations. The problem of brain parcellation is approached by independently training a random forest and a multi-atlas segmentation algorithm, then combining them by a simple Bayesian product operation. It is shown that, given classifiers providing complementary information, the hybrid classifier provides a superior result. The Bayesian product method of combination outperforms simple averaging where the classifiers are sufficiently independent. Finally, we present a system for identifying and tracking major arteries in Magnetic Resonance Angiography datasets, using automatically detected vascular landmarks to seed the tracking. Knowledge of individual vessel characteristics is employed to guide the tracking algorithm by two means. Firstly, the data is pre-processed using a top-hat transform of size corresponding to the vessel diameter. Secondly, a vascular atlas is generated to inform the cost function employed in the minimum path algorithm. Fully automatic tracking of the major arteries of the body is satisfactorily demonstrated

    Landmark Localization, Feature Matching and Biomarker Discovery from Magnetic Resonance Images

    Get PDF
    The work presented in this thesis proposes several methods that can be roughly divided into three different categories: I) landmark localization in medical images, II) feature matching for image registration, and III) biomarker discovery in neuroimaging. The first part deals with the identification of anatomical landmarks. The motivation stems from the fact that the manual identification and labeling of these landmarks is very time consuming and prone to observer errors, especially when large datasets must be analyzed. In this thesis we present three methods to tackle this challenge: A landmark descriptor based on local self-similarities (SS), a subspace building framework based on manifold learning and a sparse coding landmark descriptor based on data-specific learned dictionary basis. The second part of this thesis deals with finding matching features between a pair of images. These matches can be used to perform a registration between them. Registration is a powerful tool that allows mapping images in a common space in order to aid in their analysis. Accurate registration can be challenging to achieve using intensity based registration algorithms. Here, a framework is proposed for learning correspondences in pairs of images by matching SS features and random sample and consensus (RANSAC) is employed as a robust model estimator to learn a deformation model based on feature matches. Finally, the third part of the thesis deals with biomarker discovery using machine learning. In this section a framework for feature extraction from learned low-dimensional subspaces that represent inter-subject variability is proposed. The manifold subspace is built using data-driven regions of interest (ROI). These regions are learned via sparse regression, with stability selection. Also, probabilistic distribution models for different stages in the disease trajectory are estimated for different class populations in the low-dimensional manifold and used to construct a probabilistic scoring function.Open Acces

    Human Pose Estimation with Implicit Shape Models

    Get PDF
    This work presents a new approach for estimating 3D human poses based on monocular camera information only. For this, the Implicit Shape Model is augmented by new voting strategies that allow to localize 2D anatomical landmarks in the image. The actual 3D pose estimation is then formulated as a Particle Swarm Optimization (PSO) where projected 3D pose hypotheses are compared with the generated landmark vote distributions
    corecore