718 research outputs found

    Wavelet treatment of the intra-chain correlation functions of homopolymers in dilute solutions

    Full text link
    Discrete wavelets are applied to parametrization of the intra-chain two-point correlation functions of homopolymers in dilute solutions obtained from Monte Carlo simulation. Several orthogonal and biorthogonal basis sets have been investigated for use in the truncated wavelet approximation. Quality of the approximation has been assessed by calculation of the scaling exponents obtained from des Cloizeaux ansatz for the correlation functions of homopolymers with different connectivities in a good solvent. The resulting exponents are in a better agreement with those from the recent renormalisation group calculations as compared to the data without the wavelet denoising. We also discuss how the wavelet treatment improves the quality of data for correlation functions from simulations of homopolymers at varied solvent conditions and of heteropolymers.Comment: RevTeX, 19 pages, 7 PS figures. Accepted for publication in PR

    Non-equispaced B-spline wavelets

    Full text link
    This paper has three main contributions. The first is the construction of wavelet transforms from B-spline scaling functions defined on a grid of non-equispaced knots. The new construction extends the equispaced, biorthogonal, compactly supported Cohen-Daubechies-Feauveau wavelets. The new construction is based on the factorisation of wavelet transforms into lifting steps. The second and third contributions are new insights on how to use these and other wavelets in statistical applications. The second contribution is related to the bias of a wavelet representation. It is investigated how the fine scaling coefficients should be derived from the observations. In the context of equispaced data, it is common practice to simply take the observations as fine scale coefficients. It is argued in this paper that this is not acceptable for non-interpolating wavelets on non-equidistant data. Finally, the third contribution is the study of the variance in a non-orthogonal wavelet transform in a new framework, replacing the numerical condition as a measure for non-orthogonality. By controlling the variances of the reconstruction from the wavelet coefficients, the new framework allows us to design wavelet transforms on irregular point sets with a focus on their use for smoothing or other applications in statistics.Comment: 42 pages, 2 figure

    Ordinal Probit Functional Regression Models with Application to Computer-Use Behavior in Rhesus Monkeys

    Full text link
    Research in functional regression has made great strides in expanding to non-Gaussian functional outcomes, however the exploration of ordinal functional outcomes remains limited. Motivated by a study of computer-use behavior in rhesus macaques (\emph{Macaca mulatta}), we introduce the Ordinal Probit Functional Regression Model or OPFRM to perform ordinal function-on-scalar regression. The OPFRM is flexibly formulated to allow for the choice of different basis functions including penalized B-splines, wavelets, and O'Sullivan splines. We demonstrate the operating characteristics of the model in simulation using a variety of underlying covariance patterns showing the model performs reasonably well in estimation under multiple basis functions. We also present and compare two approaches for conducting posterior inference showing that joint credible intervals tend to out perform point-wise credible. Finally, in application, we determine demographic factors associated with the monkeys' computer use over the course of a year and provide a brief analysis of the findings

    Damage detection in beams from modal and wavelet analysis using a stationary roving mass and noise estimation

    Get PDF
    This paper uses the Continuous Wavelet Transform Analysis on mode shapes for damage identification. The wavelet analysis is applied to the difference in the mode shapes between a healthy and a damaged state. The paper also includes a novel methodology for estimating the level of noise of the experimental mode shapes based on a standard Signal to Noise Ratio (SNR). The estimated SNRs are used for identifying and making emphasis on the less noisy data. Moreover, a mass attached to the structure is considered to enhance the sensitivity of the structure to damage. Modal analysis is performed for different positions of the mass along the beam. The results obtained for all the positions of the mass are combined so an averaging process is implicitly applied. The paper presents the results from an experimental test of a cantilever steel beam with different severity levels of damage at the same location. The results show that the use of the attached mass reduces the effect of noise and increases the sensitivity to damage. Little damage can be identified with the proposed methodology even using a small number of sensors and only the first five bending modesConsejerĂ­a de EconomĂ­a, InnovaciĂłn, Ciencia y Empleo, Junta de AndalucĂ­a. Grant Number: P12-TEP-2546Ministerio de EconomĂ­a y Competitividad. Grant Numbers: BIA2013-43085-P, BIA2016-75042-C2-1-

    The Multilevel Structures of NURBs and NURBlets on Intervals

    Get PDF
    This dissertation is concerned with the problem of constructing biorthogonal wavelets based on non-uniform rational cubic B-Splines on intervals. We call non-uniform rational B-Splines ``NURBs , and such biorthogonal wavelets ``NURBlets . Constructing NURBlets is useful in designing and representing an arbitrary shape of an object in the industry, especially when exactness of the shape is critical such as the shape of an aircraft. As we know presently most popular wavelet models in the industry are approximated at boundaries. In this dissertation a new model is presented that is well suited for generating arbitrary shapes in the industry with mathematical exactness throughout intervals; it fulfills interpolation at boundaries as well

    Lack-of-fit tests in semiparametric mixed models.

    Get PDF
    In this paper we obtain the asymptotic distribution of restricted likelihood ratio tests in mixed linear models with a fixed and finite number of random effects. We explain why for such models the often quoted 50:50 mixture of a chi-s quared random variable with one degree of freedom and a point mass at zero does not hold. Our motivation is a study of the use of wavelets for lack-of-fit testing within a mixed model framework. Even though wavelet shave received a lot of attention in the last say 15 years for the estimation of piecewise smooth functions, much less is known about their ability to check the adequacy of a parametric model when fitting the observed data. In particular we study the testing power of wavelets for testing a hypothesized parametric model within a mixed model framework. Experimental results show that in several situations the wavelet-based test significantly outperforms the com-petitor based on penalized regression splines. The obtained results are also applicable for testing in mixed models in general, and shed some new insight into previous results.Lack-off-fittest; Likelihood ratio test; Mixed models; One-sided test; Penalization; Restricted maximum likelihood; Variance components; Wavel; Asymptotic distribution; Distribution; Likelihood; Tests; Models; Model; Random effects; Effects; Studies; Lack-of-fit; Mixed model; Framework; Functions; Data; Power; Regression;
    • 

    corecore