30 research outputs found

    Optimal Morphs of Planar Orthogonal Drawings

    Get PDF
    We describe an algorithm that morphs between two planar orthogonal drawings Gamma_I and Gamma_O of a connected graph G, while preserving planarity and orthogonality. Necessarily Gamma_I and Gamma_O share the same combinatorial embedding. Our morph uses a linear number of linear morphs (linear interpolations between two drawings) and preserves linear complexity throughout the process, thereby answering an open question from Biedl et al. [Biedl et al., 2013]. Our algorithm first unifies the two drawings to ensure an equal number of (virtual) bends on each edge. We then interpret bends as vertices which form obstacles for so-called wires: horizontal and vertical lines separating the vertices of Gamma_O. We can find corresponding wires in Gamma_I that share topological properties with the wires in Gamma_O. The structural difference between the two drawings can be captured by the spirality of the wires in Gamma_I, which guides our morph from Gamma_I to Gamma_O

    On the Parameterized Complexity of Bend-Minimum Orthogonal Planarity

    Full text link
    Computing planar orthogonal drawings with the minimum number of bends is one of the most relevant topics in Graph Drawing. The problem is known to be NP-hard, even when we want to test the existence of a rectilinear planar drawing, i.e., an orthogonal drawing without bends (Garg and Tamassia, 2001). From the parameterized complexity perspective, the problem is fixed-parameter tractable when parameterized by the sum of three parameters: the number of bends, the number of vertices of degree at most two, and the treewidth of the input graph (Di Giacomo et al., 2022). We improve this last result by showing that the problem remains fixed-parameter tractable when parameterized only by the number of vertices of degree at most two plus the number of bends. As a consequence, rectilinear planarity testing lies in \FPT~parameterized by the number of vertices of degree at most two.Comment: Appears in the Proceedings of the 31st International Symposium on Graph Drawing and Network Visualization (GD 2023

    Upward planar drawings with two slopes

    Get PDF
    In an upward planar 2-slope drawing of a digraph, edges are drawn as straight-line segments in the upward direction without crossings using only two different slopes. We investigate whether a given upward planar digraph admits such a drawing and, if so, how to construct it. For the fixed embedding scenario, we give a simple characterisation and a linear-time construction by adopting algorithms from orthogonal drawings. For the variable embedding scenario, we describe a linear-time algorithm for single-source digraphs, a quartic-time algorithm for series-parallel digraphs, and a fixed-parameter tractable algorithm for general digraphs. For the latter two classes, we make use of SPQR-trees and the notion of upward spirality. As an application of this drawing style, we show how to draw an upward planar phylogenetic network with two slopes such that all leaves lie on a horizontal line

    Rectilinear Planarity of Partial 2-Trees

    Full text link
    A graph is rectilinear planar if it admits a planar orthogonal drawing without bends. While testing rectilinear planarity is NP-hard in general (Garg and Tamassia, 2001), it is a long-standing open problem to establish a tight upper bound on its complexity for partial 2-trees, i.e., graphs whose biconnected components are series-parallel. We describe a new O(n^2)-time algorithm to test rectilinear planarity of partial 2-trees, which improves over the current best bound of O(n^3 \log n) (Di Giacomo et al., 2022). Moreover, for partial 2-trees where no two parallel-components in a biconnected component share a pole, we are able to achieve optimal O(n)-time complexity. Our algorithms are based on an extensive study and a deeper understanding of the notion of orthogonal spirality, introduced several years ago (Di Battista et al, 1998) to describe how much an orthogonal drawing of a subgraph is rolled-up in an orthogonal drawing of the graph.Comment: arXiv admin note: substantial text overlap with arXiv:2110.00548 Appears in the Proceedings of the 30th International Symposium on Graph Drawing and Network Visualization (GD 2022

    On Bend-Minimized Orthogonal Drawings of Planar 3-Graphs

    Get PDF
    An orthogonal drawing of a graph is a planar drawing where each edge is drawn as a sequence of horizontal and vertical line segments. Finding a bend-minimized orthogonal drawing of a planar graph of maximum degree 4 is NP-hard. The problem becomes tractable for planar graphs of maximum degree 3, and the fastest known algorithm takes O(n^5 log n) time. Whether a faster algorithm exists has been a long-standing open problem in graph drawing. In this paper we present an algorithm that takes only O~(n^{17/7}) time, which is a significant improvement over the previous state of the art

    Orthogonal Graph Drawing with Inflexible Edges

    Full text link
    We consider the problem of creating plane orthogonal drawings of 4-planar graphs (planar graphs with maximum degree 4) with constraints on the number of bends per edge. More precisely, we have a flexibility function assigning to each edge ee a natural number flex(e)\mathrm{flex}(e), its flexibility. The problem FlexDraw asks whether there exists an orthogonal drawing such that each edge ee has at most flex(e)\mathrm{flex}(e) bends. It is known that FlexDraw is NP-hard if flex(e)=0\mathrm{flex}(e) = 0 for every edge ee. On the other hand, FlexDraw can be solved efficiently if flex(e)1\mathrm{flex}(e) \ge 1 and is trivial if flex(e)2\mathrm{flex}(e) \ge 2 for every edge ee. To close the gap between the NP-hardness for flex(e)=0\mathrm{flex}(e) = 0 and the efficient algorithm for flex(e)1\mathrm{flex}(e) \ge 1, we investigate the computational complexity of FlexDraw in case only few edges are inflexible (i.e., have flexibility~00). We show that for any ε>0\varepsilon > 0 FlexDraw is NP-complete for instances with O(nε)O(n^\varepsilon) inflexible edges with pairwise distance Ω(n1ε)\Omega(n^{1-\varepsilon}) (including the case where they induce a matching). On the other hand, we give an FPT-algorithm with running time O(2knTflow(n))O(2^k\cdot n \cdot T_{\mathrm{flow}}(n)), where Tflow(n)T_{\mathrm{flow}}(n) is the time necessary to compute a maximum flow in a planar flow network with multiple sources and sinks, and kk is the number of inflexible edges having at least one endpoint of degree 4.Comment: 23 pages, 5 figure

    Ortho-Radial Drawing in Near-Linear Time

    Get PDF
    An orthogonal drawing is an embedding of a plane graph into a grid. In a seminal work of Tamassia (SIAM Journal on Computing 1987), a simple combinatorial characterization of angle assignments that can be realized as bend-free orthogonal drawings was established, thereby allowing an orthogonal drawing to be described combinatorially by listing the angles of all corners. The characterization reduces the need to consider certain geometric aspects, such as edge lengths and vertex coordinates, and simplifies the task of graph drawing algorithm design. Barth, Niedermann, Rutter, and Wolf (SoCG 2017) established an analogous combinatorial characterization for ortho-radial drawings, which are a generalization of orthogonal drawings to cylindrical grids. The proof of the characterization is existential and does not result in an efficient algorithm. Niedermann, Rutter, and Wolf (SoCG 2019) later addressed this issue by developing quadratic-time algorithms for both testing the realizability of a given angle assignment as an ortho-radial drawing without bends and constructing such a drawing. In this paper, we improve the time complexity of these tasks to near-linear time. We establish a new characterization for ortho-radial drawings based on the concept of a good sequence. Using the new characterization, we design a simple greedy algorithm for constructing ortho-radial drawings
    corecore