218 research outputs found

    Photon Polarization Precession Spectroscopy for High-Resolution Studies of Spinwaves

    Full text link
    A new type of spectroscopy for high-resolution studies of spin waves that relies on resonant scattering of hard x-rays is introduced. The energy transfer in the scattering process is encoded in the precession of the polarization vector of the scattered photons. Thus, the energy resolution of such a spectroscopy is independent of the bandwidth of the probing radiation. The measured quantity resembles the intermediate scattering function of the magnetic excitations in the sample. At pulsed x-ray sources, especially x-ray lasers, the proposed technique allows to take single-shot spectra of the magnetic dynamics. The method opens new avenues to study low-energy non-equilibrium magnetic processes in a pump-probe setup.Comment: 5 pages, 2 figure

    Topological spin waves in the atomic-scale magnetic skyrmion crystal

    Get PDF
    We study the spin waves of the triangular skyrmion crystal that emerges in a two-dimensional spin lattice model as a result of the competition between Heisenberg exchange, Dzyalonshinkii–Moriya interactions, Zeeman coupling and uniaxial anisotropy. The calculated spin wave bands have a finite Berry curvature that, in some cases, leads to non-zero Chern numbers, making this system topologically distinct from conventional magnonic systems. We compute the edge spin-waves, expected from the bulk-boundary correspondence principle, and show that they are chiral, which makes them immune to elastic backscattering. Our results illustrate how topological phases can occur in self-generated emergent superlattices at the mesoscale.The authors would like to thank funding from grants Fondecyt 1150072, ICM P10-061-F by Fondo de Innovación para la Competitividad-MINECON and Anillo ACT 1117. ASN also acknowledges support from Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia, under Project No. FB 0807(Chile)

    Topological spin waves in the atomic-scale magnetic skyrmion crystal

    Get PDF
    We study the spin waves of the triangular skyrmion crystal that emerges in a two-dimensional spin lattice model as a result of the competition between Heisenberg exchange, Dzyalonshinkii–Moriya interactions, Zeeman coupling and uniaxial anisotropy. The calculated spin wave bands have a finite Berry curvature that, in some cases, leads to non-zero Chern numbers, making this system topologically distinct from conventional magnonic systems. We compute the edge spin-waves, expected from the bulk-boundary correspondence principle, and show that they are chiral, which makes them immune to elastic backscattering. Our results illustrate how topological phases can occur in self-generated emergent superlattices at the mesoscale.The authors would like to thank funding from grants Fondecyt 1150072, ICM P10-061-F by Fondo de Innovación para la Competitividad-MINECON and Anillo ACT 1117. ASN also acknowledges support from Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia, under Project No. FB 0807(Chile)

    Indirect interactions between magnets

    Get PDF

    Quantum electrodynamics with magnetic textures

    Get PDF
    Coherent exchange between photons and different matter excitations (like qubits, acoustic surface waves or spins) allows for the entanglement of light and matter and provides a toolbox for performing fundamental quantum physics. On top of that, coherent exchange is a basic ingredient in the majority of quantum information processors. In this work, we develop the theory for coupling between magnetic textures (vortices and skyrmions) stabilized in ferromagnetic nanodiscs and microwave photons generated in a superconducting circuit. Within this theory we show that this hybrid system serves for performing broadband spectroscopy of the magnetic textures. We also discuss the possibility of reaching the strong coupling regime between these texture excitations and a single photon residing in a microwave superconducting cavity
    • …
    corecore