1,514 research outputs found

    An Enhanced Security-Constrained Unit Commitment Model with Reserve Response Set Policies

    Get PDF
    Security-constrained unit commitment (SCUC) is a classical problem used for day-ahead commitment, dispatch, and reserve scheduling. Even though SCUC models acquire reserves, N-1 reliability is not guaranteed. This paper presents an enhanced security-constrained unit commitment formulation that facilitates the integration of stochastic resources and accounts for reserve deliverability issues. In this formulation, the SCUC is modified to incorporate a reserve response set model. The enhanced reserve model aims to predict the effects of nodal reserve deployment on critical transmission lines so as to improve the deliverability of reserves post-contingency. The enhanced reserve policies are developed using a knowledge discovery process as a means to predict reserve activation. The approach, thus, aims to acquire reserve at prime locations that face fewer reserve deliverability issues. The results show that the proposed approach consistently outperforms contemporary approaches. All numerical results are based on the IEEE 73-bus test case

    A Review of Recent Advances in Economic Dispatch

    Get PDF
    A survey is presented of papers and reports that address various aspects of economic dispatch. The time period considered is 1977-88. Four related areas of economic dispatch are identified and papers published in the general areas of economic dispatch are classified into these. These areas are: optimal power flow, economic dispatch in relation to AGC, dynamic dispatch, and economic dispatch with nonconventional generation sources

    Assessment of spinning reserve requirements in a deregulated system

    Get PDF
    A spinning reserve assessment technique for a deregulated system has been developed and presented in this thesis. The technique is based on direct search optimization approach. Computer programs have been developed to implement the optimization processes both for transmission loss and without transmission loss. A system commits adequate generation to satisfy its load and export/import commitment. Additional generation known as spinning reserve is also required to satisfy unforeseen load changes or withstand sudden generation loss. In a vertically integrated system, a single entity generates, transmits and distributes electrical energy. As a part of its operational planning, the single entity decides the level of spinning reserve. The cost associated with generation, transmission, distribution including the spinning reserve is then passed on to the customers. In a deregulated system, generation, transmission and distribution are three businesses. Generators compete with each other to sell their energy to the Independent System Operators (ISO). ISO coordinates the bids from the generation as well as the bids from the bulk customers. In order to ensure a reliable operation, ISO must also ensure that the system has adequate spinning reserve. ISO must buy spinning reserve from the spinning reserve market. A probabilistic method called the load forecast uncertainty (LFU)-based spinning reserve assessment (LSRA) is proposed to assess the spinning reserve requirements in a deregulated power system. The LSRA is an energy cost- based approach that incorporates the load forecast uncertainty of the day-ahead market (DAM) and the energy prices within the system in the assessment process. The LSRA technique analyzes every load step of the 49-step LFU model and the probability that the hourly DAM load will be within that load step on the actual day. Economic and reliability decisions are made based on the analysis to determine and minimize the total energy cost for each hour subject to certain system constraints in order to assess the spinning reserve requirements. The direct search optimization approach is easily implemented in the determination of the optimal SR requirements since the objective function is a combination of linear and non-linear functions. This approach involves varying the amount of SR within the system from zero to the maximum available capacity. By varying the amount of SR within the system, the optimal SR for which the hourly total operating cost is minimum and all operating constraints are satisfied is evaluated. One major advantage of the LSRA technique is the inclusion of all the major system variables like DAM hourly loads and energy prices and the utilization of the stochastic nature of the system components in its computation. The setback in this technique is the need to have access to historical load data and spot market energy prices during all seasons. The availability and reliability of these historical data has a huge effect on the LSRA technique to adequately assess the spinning reserve requirements in a deregulated system. The technique, along with the effects of load forecast uncertainty, energy prices of spinning reserve and spot market and the reloading up and down limits of the generating zones on the spinning reserve requirements are illustrated in detail in this thesis work. The effects of the above stochastic components of the power system on the spinning reserve requirements are illustrated numerically by different graphs using a computer simulation of the technique incorporating test systems with and without transmission loss

    Decision support for the production and distribution of electricity under load shedding

    Get PDF
    Every day national power system networks provide thousands of MW of electric power from generating units to consumers. This process requires different operations and planning to ensure the security of the entire system. Part of the daily or weekly operation system is the so called Unit Commitment problem which consists of scheduling the available resources in order to meet the system demand. But the continuous growth in electricity demand might put pressure on the ability of the generation system to sufficiently provide supply. In such case load shedding (a controlled, enforced reduction in electricity supply) is necessary to prevent the risk to system collapse. In South Africa at the present time, a systematic lack of supply has meant that regular load shedding has taken place, with substantial economic and social costs. In this research project we study two optimization problems related to load shedding. The first is how load shedding can be integrated into the unit commitment problem. The second is how load shedding can be fairly and efficiently allocated across areas. We develop deterministic and stochastic linear and goal programming models for these purposes. Several case studies are conducted to explore the possible solutions that the proposed models can offer

    Quantification of Intra-hour Security-constrained Flexibility Region

    Get PDF
    Rapid growth of renewable energy sources (RES) in the generation capacity mix poses substantial challenges on the operation of power systems in various time scales. Particularly in the intra-hour time scale, the interplay among variability and uncertainty of RES, unexpected transmission/generation outages, and short dispatch lead time cause difficulties in generation-load balancing. This paper proposes a method to quantify the intra-hour flexibility region. A robust security-constrained multi-period optimal power flow (RSC-OPF) model is first constructed to quantify the frequency, magnitude, and intensity of insufficient flexibility. The randomness of RES is captured by uncertainty sets in this model. The N-k contingency, spinning reserve, and corrective control limit constraints are included. This model is then cast into a two-stage robust optimization (RO) model and solved by the column-and-constraint generation (C&CG) method. The emergency measures with a least number of affected buses are derived and subsequently assessed by the post-optimization sensitivity analysis. Finally, the operational flexibility region is determined by continuous perturbation on the RES penetration level and the forecast error. The IEEE 14-bus system and a realistic Chinese 157-bus system are used to demonstrate the proposed method.postprin

    Operating health analysis of electric power systems

    Get PDF
    The required level of operating reserve to be maintained by an electric power system can be determined using both deterministic and probabilistic techniques. Despite the obvious disadvantages of deterministic approaches there is still considerable reluctance to apply probabilistic techniques due to the difficulty of interpreting a single numerical risk index and the lack of sufficient information provided by a single index. A practical way to overcome difficulties is to embed deterministic considerations in the probabilistic indices in order to monitor the system well-being. The system well-being can be designated as healthy, marginal and at risk. The concept of system well-being is examined and extended in this thesis to cover the overall area of operating reserve assessment. Operating reserve evaluation involves the two distinctly different aspects of unit commitment and the dispatch of the committed units. Unit commitment health analysis involves the determination of which unit should be committed to satisfy the operating criteria. The concepts developed for unit commitment health, margin and risk are extended in this thesis to evaluate the response well-being of a generating system. A procedure is presented to determine the optimum dispatch of the committed units to satisfy the response criteria. The impact on the response wellbeing being of variations in the margin time, required regulating margin and load forecast uncertainty are illustrated. The effects on the response well-being of rapid start units, interruptible loads and postponable outages are also illustrated. System well-being is, in general, greatly improved by interconnection with other power systems. The well-being concepts are extended to evaluate the spinning reserve requirements in interconnected systems. The interconnected system unit commitment problem is decomposed into two subproblems in which unit scheduling is performed in each isolated system followed by interconnected system evaluation. A procedure is illustrated to determine the well-being indices of the overall interconnected system. Under normal operating conditions, the system may also be able to carry a limited amount of interruptible load on top of its firm load without violating the operating criterion. An energy based approach is presented to determine the optimum interruptible load carrying capability in both the isolated and interconnected systems. Composite system spinning reserve assessment and composite system well-being are also examined in this research work. The impacts on the composite well-being of operating reserve considerations such as stand-by units, interruptible loads and the physical locations of these resources are illustrated. It is expected that the well-being framework and the concepts developed in this research work will prove extremely useful in the new competitive utility environment

    Dynamic Economic Dispatch For Power System

    Get PDF
    The research work in this dissertation deals with dynamic economic dispatch problem for large power systems. The work mathematically proves the dynamicity of the economic dispatch. Many physical and operational constraints were considered in the model of the dynamic economic dispatch problem. The problem is to optimize the total generation costs while satisfying the operational constraints. Through an appropriate utilization of the structural features of the model, a solution algorithm based on Particle Swarm Optimization is developed. The performance of the PSO-based developed algorithm was tested on simple case studies with a small number of generation units and limited constraints, and then on more complex case studies with a large number of variables and complicated constraints. The solution algorithm based on a constraint relaxation and period-by-period is developed and tested. The last part of the dissertation is dedicated to the comparison of solution results obtained by using PSO method and the Dantzig-Wolfe decomposition method for different cases of size and complexity. This research finds large variable size DED problems can be easily implemented, PSO method is reliable and is suitable for real-time analysis. Also, time-segmentation of the solution, or as known as a period by period solution, always results in sub-optimality, while, only by solving the optimization problem in totality can lead to an optimal solution. By modifying constraints, the method can provide alternate solutions to the dispatcher. Trade-offs between the level of convergence to the global solution and the required execution time necessitate finding a mean to enhance the social component and determine an appropriate value that leads to limiting the search space of the swarm
    • …
    corecore