17 research outputs found

    Design methodology of an active back-support exoskeleton with adaptable backbone-based kinematics

    Get PDF
    Abstract Manual labor is still strongly present in many industrial contexts (such as aerospace industry). Such operations commonly involve onerous tasks requiring to work in non-ergonomic conditions and to manipulate heavy parts. As a result, work-related musculoskeletal disorders are a major problem to tackle in workplace. In particular, back is one of the most affected regions. To solve such issue, many efforts have been made in the design and control of exoskeleton devices, relieving the human from the task load. Besides upper limbs and lower limbs exoskeletons, back-support exoskeletons have been also investigated, proposing both passive and active solutions. While passive solutions cannot empower the human's capabilities, common active devices are rigid, without the possibility to track the human's spine kinematics while executing the task. The here proposed paper describes a methodology to design an active back-support exoskeleton with backbone-based kinematics. On the basis of the (easily implementable) scissor hinge mechanism, a one-degree of freedom device has been designed. In particular, the resulting device allows tracking the motion of a reference vertebra, i.e., the vertebrae in the correspondence of the connection between the scissor hinge mechanism and the back of the operator. Therefore, the proposed device is capable to adapt to the human posture, guaranteeing the support while relieving the person from the task load. In addition, the proposed mechanism can be easily optimized and realized for different subjects, involving a subject-based design procedure, making possible to adapt its kinematics to track the spine motion of the specific user. A prototype of the proposed device has been 3D-printed to show the achieved kinematics. Preliminary tests for discomfort evaluation show the potential of the proposed methodology, foreseeing extensive subjects-based optimization, realization and testing of the device

    Occupational Exoskeletons: Understanding the Impact on Workers and Suggesting Guidelines for Practitioners and Future Research Needs

    Get PDF
    This paper examines occupational exoskeletons and their effects on workers. The study includes a thorough evaluation of the current literature on occupational exoskeletons, with an emphasis on the impact of these devices on workers’ health and the safety, performance and users’ subjective perceptions. The aim of the study was to gain knowledge of how exoskeletons affect the workers and to identify practical suggestions for practitioners. The findings of the study suggest that exoskeletons can have both positive and negative effects on workers. Some users claimed enhanced comfort and decreased fatigue, whilst others reported discomfort and suffering. The study highlights the importance of considering the individual needs and preferences of workers when selecting and implementing exoskeletons in the workplace, with a focus on health, safety, performance and user acceptance. Based on the findings, the paper presents suggestions for employers and practitioners to ensure the effective and safe use of exoskeletons in occupational settings. These recommendations cover areas such as the assessment of workplace requirements, the selection and fit of exoskeletons, the optimization of design and ergonomics and the evaluation of performance. The paper concludes by highlighting the need for further research in this area, particularly in the areas of long-term use

    Crit Rev Biomed Eng

    Get PDF
    Industrial exoskeletons have been used to assist workers during occupational activities, such as overhead work, tool-use, mobility, stooping/squatting, and/or load carrying in various industries. Despite the promise of reducing the risk of work-related musculoskeletal disorders, there is a lack of sufficient evidence to support the safe and effective use of industrial exoskeletons. To assess the merits and residual risks of various types of exoskeletons in different work settings, more comprehensive evaluation procedures are needed. This review study aims to provide an overview of the existing viable and promising methods for evaluating the effectiveness of industrial exoskeletons. The different evaluation methods are organized into three categories-in vitro, in vivo, and in silico studies. The limitations and challenges in different types of evaluation approaches are also discussed. In summary, this review sheds light on choosing appropriate evaluation approaches and may help with decision-making during the development, evaluation, and application of industrial exoskeletons.20212022-06-15T00:00:00ZCC999999/ImCDC/Intramural CDC HHSUnited States/35695600PMC91995871167

    The Asymmetric Back Exosuit: Design, Realization, and Biomechanical Evaluation

    Get PDF
    Musculoskeletal disorders of the back are an extremely prevalent health issue across the workforce in the United States. This is especially a concern in industries involving manual materials handling tasks that cause low back pain. While these injuries are generated by both symmetric and asymmetric lifting, asymmetric movements are often more damaging. Exoskeleton technology has become an increasingly popular preventative measure to low back pain, but many devices do not assist in asymmetry. Thus, I present a new system called the Asymmetric Back Exosuit (ABX). The ABX addresses this important gap in the field through unique design geometry and active cable-driven actuation. The suit allows the user to move in a wide range of lumbar trajectories while the “X” pattern cable routing allows for variable assistance application for these trajectories, enabling assistance during asymmetric movements. As indicated by a biomechanical model of the system made in OpenSim, the cable forces can be mapped to effective lumbar torque assistance for a given lumbar trajectory, allowing for intuitive controller design over the complex kinematic chain for varying lifting techniques. An early human subject study indicated that the ABX was able to reduce low back muscle activation during symmetric and asymmetric lifting by an average of 37.8% and 16.0%, respectively, compared to lifting without the exosuit. This was expanded to a larger biomechanics study of the ABX for which preliminary results of three subjects are examined and discussed. These evaluations indicate the potential for the ABX to reduce lumbar injury risk during symmetric and asymmetric manual materials handling tasks.M.S

    Biomechanical Load of Neck and Lumbar Joints in Open-Surgery Training

    Get PDF
    The prevalence of musculoskeletal symptoms (MSS) like neck and back pain is high among open-surgery surgeons. Prolonged working in the same posture and unfavourable postures are biomechanical risk factors for developing MSS. Ergonomic devices such as exoskeletons are possible solutions that can reduce muscle and joint load. To design effective exoskeletons for surgeons, one needs to quantify which neck and trunk postures are seen and how much support during actual surgery is required. Hence, this study aimed to establish the biomechanical profile of neck and trunk postures and neck and lumbar joint loads during open surgery (training). Eight surgical trainees volunteered to participate in this research. Neck and trunk segment orientations were recorded using an inertial measurement unit (IMU) system during open surgery (training). Neck and lumbar joint kinematics, joint moments and compression forces were computed using OpenSim modelling software and a musculoskeletal model. Histograms were used to illustrate the joint angle and load distribution of the neck and lumbar joints over time. During open surgery, the neck flexion angle was 71.6% of the total duration in the range of 10~40 degrees, and lumbar flexion was 68.9% of the duration in the range of 10~30 degrees. The normalized neck and lumbar flexion moments were 53.8% and 35.5% of the time in the range of 0.04~0.06 Nm/kg and 0.4~0.6 Nm/kg, respectively. Furthermore, the neck and lumbar compression forces were 32.9% and 38.2% of the time in the range of 2.0~2.5 N/kg and 15~20 N/kg, respectively. In contrast to exoskeletons used for heavy lifting tasks, exoskeletons designed for surgeons exhibit lower support torque requirements while additional degrees of freedom (DOF) are needed to accommodate combinations of neck and trunk postures.</p
    corecore