1,558 research outputs found

    An evolutionary approach to routing in mobile AD HOC networks using dominating sets.

    Get PDF
    This thesis presents a new approach to routing in ad-hoc wireless networks using virtual backbones that may be approximated by the graph theoretic concept of dominating sets. · Ad hoc wireless networks provide a flexible and quick means of establishing wireless peer-to-peer communications. Routing remains the main challenging problem in an ad hoc network due to its multihop nature and dynamic network topology. Several protocols based on virtual backbones in ad hoc wireless networks have been proposed that may be used to simplify the routing process. However, little is known about the network routing performance of these protocols and no attempt has previously been made to directly compare them. This thesis is the first research effort to implement, analyze and compare the routing performance of dominating-set-based routing protocols. In this study, we examine four existing routing approaches using a virtual backbone, or spine , imposed on the ad­hoc network. We then propose an evolutionary approach to constructing a stable minimum connected dominating set in an ad hoc wireless network: this employs the use of a genetic algorithm. Since the mobile· nodes that constitute an ad hoc wireless network are constantly in motion, the network configuration is subject to constant change in a manner that resembles the biological process of mutation. This evolution of networks over time lends itself naturally to a model based on genetic algorithms. As part of an in-depth study of the application of genetic algorithms in the field of wireless networks, a scatternet formation protocol for Bluetooth networks was designed, developed and evaluated. This helped to build the knowledge base required to implement new routing protocols using the network simulator ns-2. Simulation studies were then conducted using ns-2 to compare the performance of previously proposed dominating­set-based routing approaches. In this thesis, we analyze the performance of our evolutionary routing approach and compare it with the previous approaches. We present our simulation results and show that our evolutionary routing approach outperforms the other routing algorithms with respect to end-to-end packet delay, throughput, packet delivery ratio and routing overhead· across several different scenarios. Thus, we demonstrate the advantages of utilizing a genetic algorithm to construct a backbone that is · used to effectively route packets in an ad-hoc wireless network

    Routing Protocols for Large-Scale Wireless Sensor Networks: A Review

    Get PDF
    With the advances in micro-electronics, wireless sensor gadgets have been made substantially littler and more coordinated, and large-scale wireless sensor networks (WSNs) based the participation among the noteworthy measure of nodes have turned into a hotly debated issue. "Large-scale" implies for the most part large region or high thickness of a system. As needs be the routing protocols must scale well to the system scope augmentation and node thickness increments. A sensor node is regularly energy-constrained and can't be energized, and in this manner its energy utilization has a very critical impact on the adaptability of the protocol. To the best of our insight, at present the standard strategies to tackle the energy issue in large-scale WSNs are the various leveled routing protocols. In a progressive routing protocol, every one of the nodes are separated into a few gatherings with various task levels. The nodes inside the abnormal state are in charge of data aggregation and administration work, and the low level nodes for detecting their environment and gathering data. The progressive routing protocols are ended up being more energy-proficient than level ones in which every one of the nodes assume a similar part, particularly as far as the data aggregation and the flooding of the control bundles. With concentrate on the various leveled structure, in this paper we give an understanding into routing protocols planned particularly for large-scale WSNs. As per the distinctive goals, the protocols are by and large ordered in light of various criteria, for example, control overhead decrease, energy utilization mitigation and energy adjust. Keeping in mind the end goal to pick up a thorough comprehension of every protocol, we feature their imaginative thoughts, portray the basic standards in detail and break down their points of interest and hindrances. Also a correlation of each routing protocol is led to exhibit the contrasts between the protocols as far as message unpredictability, memory necessities, localization, data aggregation, bunching way and different measurements. At last some open issues in routing protocol plan in large-scale wireless sensor networks and conclusions are proposed

    Routing Protocols for Large-Scale Wireless Sensor Networks: A Review

    Get PDF
    With the advances in micro-electronics, wireless sensor gadgets have been made substantially littler and more coordinated, and large-scale wireless sensor networks (WSNs) based the participation among the noteworthy measure of nodes have turned into a hotly debated issue. "Large-scale" implies for the most part large region or high thickness of a system. As needs be the routing protocols must scale well to the system scope augmentation and node thickness increments. A sensor node is regularly energy-constrained and can't be energized, and in this manner its energy utilization has a very critical impact on the adaptability of the protocol. To the best of our insight, at present the standard strategies to tackle the energy issue in large-scale WSNs are the various leveled routing protocols. In a progressive routing protocol, every one of the nodes are separated into a few gatherings with various task levels. The nodes inside the abnormal state are in charge of data aggregation and administration work, and the low level nodes for detecting their environment and gathering data. The progressive routing protocols are ended up being more energy-proficient than level ones in which every one of the nodes assume a similar part, particularly as far as the data aggregation and the flooding of the control bundles. With concentrate on the various leveled structure, in this paper we give an understanding into routing protocols planned particularly for large-scale WSNs. As per the distinctive goals, the protocols are by and large ordered in light of various criteria, for example, control overhead decrease, energy utilization mitigation and energy adjust. Keeping in mind the end goal to pick up a thorough comprehension of every protocol, we feature their imaginative thoughts, portray the basic standards in detail and break down their points of interest and hindrances. Also a correlation of each routing protocol is led to exhibit the contrasts between the protocols as far as message unpredictability, memory necessities, localization, data aggregation, bunching way and different measurements. At last some open issues in routing protocol plan in large-scale wireless sensor networks and conclusions are proposed

    Qos Provisioning for Energy Efficiency in Mobile Ad-Hoc Network

    Get PDF
    In mobile ad-hoc networks Quality of Service QoS of a multicast routing protocol is one of the most key performance metrics Slotconditions and network topology frequently change Topology dynamic and in order to achieve a certain level of QoS complexalgorithms and protocols are needed Network graph conditionsare neglected during the design of aexisting multicast protocol However vulnerability against network graph errors can severely affect theperformance of a multicast protocol To address this here the author proposesanenergy efficient network graph pre-processing approach to enable traffic engineering and enhance the performance of energy efficiency in terms of network efficiency by QoSprovisioning to cater the multicast routing issue in MANETS In this approach prioritized admission control PAC scheme is implemented to improvise D2D Device to Device communications into cellular network to overcome the limitations of MANET

    A Resource Intensive Traffic-Aware Scheme for Cluster-based Energy Conservation in Wireless Devices

    Full text link
    Wireless traffic that is destined for a certain device in a network, can be exploited in order to minimize the availability and delay trade-offs, and mitigate the Energy consumption. The Energy Conservation (EC) mechanism can be node-centric by considering the traversed nodal traffic in order to prolong the network lifetime. This work describes a quantitative traffic-based approach where a clustered Sleep-Proxy mechanism takes place in order to enable each node to sleep according to the time duration of the active traffic that each node expects and experiences. Sleep-proxies within the clusters are created according to pairwise active-time comparison, where each node expects during the active periods, a requested traffic. For resource availability and recovery purposes, the caching mechanism takes place in case where the node for which the traffic is destined is not available. The proposed scheme uses Role-based nodes which are assigned to manipulate the traffic in a cluster, through the time-oriented backward difference traffic evaluation scheme. Simulation study is carried out for the proposed backward estimation scheme and the effectiveness of the end-to-end EC mechanism taking into account a number of metrics and measures for the effects while incrementing the sleep time duration under the proposed framework. Comparative simulation results show that the proposed scheme could be applied to infrastructure-less systems, providing energy-efficient resource exchange with significant minimization in the power consumption of each device.Comment: 6 pages, 8 figures, To appear in the proceedings of IEEE 14th International Conference on High Performance Computing and Communications (HPCC-2012) of the Third International Workshop on Wireless Networks and Multimedia (WNM-2012), 25-27 June 2012, Liverpool, U

    ENERGY CONSERVATION FOR WIRELESS AD HOC ROUTING

    Get PDF
    Self-configuring wireless ad hoc networks have attracted considerable attention in the last few years due to their valuable civil and military applications. One aspect of such networks that has been studied insufficiently is the energy efficiency. Energy efficiency is crucial to prolong the network lifetime and thus make the network more survivable.Nodes in wireless ad hoc networks are most likely to be driven by battery and hence operate on an extremely frugal energy budget. Conventional ad hoc routing protocols are focused on handling the mobility instead of energy efficiency. Energy efficient routing strategies proposed in literature either do not take advantage of sleep modes to conserve energy more efficiently, or incur much overhead in terms of control message and computing complexity to schedule sleep modes and thus are not scalable.In this dissertation, a novel strategy is proposed to manage the sleep of the nodes in the network so that energy can be conserved and network connectivity can be kept. The novelty of the strategy is its extreme simplicity. The idea is derived from the results of the percolation theory, typically called gossiping. Gossiping is a convenient and effective approach and has been successfully applied to several areas of the networking. In the proposed work, we will developa sleep management protocol from gossiping for both static and mobile wireless ad hoc networks. Then the protocol will be extended to the asynchronous network, where nodes manage their own states independently. Analysis and simulations will be conducted to show thecorrectness, effectiveness and efficiency of the proposed work. The comparison between analytical and simulation results will justify them for each other. We will investigate the most important performance aspects concerning the proposed strategy, including the effect ofparameter tuning and the impacts of routing protocols. Furthermore, multiple extensions will be developed to improve the performance and make the proposed strategy apply to different network scenarios
    corecore