516 research outputs found

    Towards quantitative physics-informed device level models for organic light-emitting diodes

    Get PDF

    Investigating the Causes of the Lower Electroluminescence Stability of OLEDs with Solution-Coated versus Vacuum-Deposited Host:Guest Systems

    Get PDF
    Organic light-emitting devices (OLEDs) are increasingly being used in commercial flat display products from mobile phones and smart watches to televisions. Although OLEDs have become a recognizable product to consumers only recently, their exceptional potential over competing display technologies – liquid crystal displays (LCDs) primarily – has been demonstrated for decades. While LCDs use backlighting, OLEDs are self-emissive, making it possible for each pixel to be turned on and off individually, resulting in lower power draw and deeper black levels. Perhaps one of the most unique properties of OLEDs arises from the low-temperature fabrication process, as this allows for the use of flexible plastic substrates and thus inexpensive large-scale processing. Further down the line, the possibility of fabrication of OLEDs via a solution-coating process presents an opportunity for lower-cost applications, especially solid-state lighting products. From a fabrication standpoint, OLEDs can be made via one of two approaches: vacuum-deposition or solution-coating. Vacuum-deposition is currently the main one used in the manufacturing of commercial OLED products since it allows for complicated multiple-layer devices and gives excellent device performance. However, this method has major drawbacks, such as inefficient utilization of materials, high equipment cost, high vacuum requirements, and complicated color patterning processes. Solution-coating, in contrast, provides significant advantages in terms of material utilization and fabrication costs, especially for large-area products. It also allows using inkjet printing for color patterning, offering additional advantages in reducing fabrication costs. However, the EL stability of solution-coated (SOL) OLEDs continues to be significantly lower in comparison to their vacuum-deposited (VAC) counterparts. The short lifetime is currently the main obstacle preventing the commercialization of low-cost OLEDs via solution-coating. While several studies have investigated degradation mechanisms in SOL OLEDs and identified excitons and polarons to be leading culprits, the root causes underlying the relatively faster degradation in these systems are still not clearly understood. Moreover, most of those investigations have focused on neat SOL layer systems comprised of only a single material, and host:guest (H:G) systems, typically used in the light-emitting layer (EML) of phosphorescent OLEDs, have not been adequately investigated. In addition, the studies have paid little attention to the role of guest molecules in the lower stability of SOL devices, focusing instead on the host materials. Moreover, it is necessary to find new approaches to improve the stability of SOL OLEDs and surmount this long-standing challenge for SOL OLED technology. Therefore, the main focus of this work is to (i) understand the role of host-to-guest (H → G) energy transfer and guest materials in the lower stability of SOL versus VAC phosphorescent OLEDs, and (ii) explore approaches to increase SOL device stability. This study led to a number of new findings. First, our studies indicated that the faster degradation of SOL EML devices relative to their VAC EML counterparts under electrical stress is due – at least in part – to the less efficient H → G energy transfer in these systems, which accelerates molecular aggregation in the EML. Interactions between excitons and polarons in the EMLs induce this aggregation phenomenon which occurs more strongly in the case of SOL EMLs compared to their VAC counterparts because of the higher host exciton concentration in the former as a result of the less efficient H → G energy transfer. In addition, our results demonstrated that emitter guests aggregate as a result of electrical stress, giving rise to the emergence of new longer-wavelength bands in the EL spectra of devices after prolonged operation. However, the intensity of these aggregation emission bands is much stronger in the case of SOL H:G systems than their VAC counterparts, indicating that guest aggregation occurs much faster in the former. Results also showed that the differences in behavior arise from differences in the initial film morphologies, and are likely associated with the solvent used in the solution-coating process. Moreover, although excitons can drive this aggregation in the case of SOL EML devices, the coexistence of excitons and polarons accelerates this phenomenon significantly in these devices, possibly through exciton-polaron-induced aggregation (EPIA). Next, a co-doped system was introduced as a novel approach for enhancing the lifetime of SOL phosphorescent OLEDs. The findings revealed that the intensity of guest aggregation emission bands is much stronger in devices with a single dopant compared to their co-doped counterparts, indicating a faster occurrence of guest aggregation in the former. Moreover, devices utilizing the co-doped system exhibit a 3× longer half-life (LT50) than devices with a single dopant. Finally, the improvement of SOL OLED lifetime was presented using increasing the guest concentrations. To achieve this, thermally-activated delayed fluorescence (TADF) emitters, capable of being incorporated into the EML at a relatively high concentration, were doped into the host material at varying concentrations. The results showed that increasing guest concentration from 10 wt. % to 30 wt. % in H:G systems leads to a more efficient H → G energy transfer, resulting in a longer LT50

    TADF OLEDs: characterization, modelling and detailed degradation analysis

    Get PDF
    The need of high quality and efficient displays is continuously increasing. The organic light-emitting diode (OLED) technology is certainly one of the most important in this sense, thanks to their high contrast, excellent color purity and wide viewing angle. Despite being already widely used in commercial products, scientific research on OLED materials is still ongoing to improve their efficiency and durability. A new technology which might replace currently used emissive materials in OLED is the so called thermally-activated delayed fluorescence (TADF). With these emitters, the display efficiency can be improved without the need of expensive and pollutant heavy metal atoms. This PhD project is focused on these materials and their use in OLEDs. The study of TADF OLEDs presented in this thesis has been structured in three main parts. The first study allows to clarify a frequent misconception about these emitters: the portion of excitons leading to an emissive event, usually approximated to 100%, can actually be much lower when electrically excited. A method to estimate this value is provided from the analysis of transient and steady state optical measurements. In a state-of-the-art OLED, the emission layer (EML) consists of two or more components. The adjustment of each material component and the optimization of the concentration largely impact the OLED performance. In the second study, OLEDs containing different concentrations of the TADF molecule in the emissive layer are investigated. Several experimental techniques are used and, with the use of software simulations, the effect of emission layer composition on the charge and excitonic processes is analysed. The key aspect which must be improved in order to make TADF a suitable technology in commercial products, is the lifetime. Two studies about this topic have been included in this thesis. To effectively measure the lifetime of emissive devices, one would need to operate them for several thousands of hours. This approach is definitely not applicable on a large scale, when a multitude of different devices need to be tested, since it requires a lot of time and resources. Such characterization is therefore typically done under accelerated stressing conditions, with high currents and/or temperatures. The use of appropriate scaling laws allows to estimate the durability of the device in standard operating conditions from the accelerated ones. In the first study described in this work, several identical TADF OLEDs have been stressed with different current at different temperature, and the complete set of luminance decay is fed into a global fitting algorithm. With this approach the expected lifetime can be estimated in a shorter amount of time, yet with a high accuracy. To improve the device lifetime, a detailed understanding of the processes causing it is necessary. The second study on device lifetime goes more into detail of the degradation processes occurring in a specific TADF OLED stack. The devices are stressed with constant current, and during stressing interruption a series of experimental techniques are used. Electrical device simulations are used to model these OLEDs and qualitatively identify the degradation causes. Specifically, it is found that the generation of trap states causes a variation of the charge injection and accumulation inside the device

    Charge-carrier dynamics in organic LEDs

    Get PDF
    Anyone who decides to buy a new mobile phone today is likely to buy a screen made from organic light-emitting diodes (OLEDs). OLEDs are a relatively new display technology and will probably account for the largest market share in the upcoming years. This is due to their brilliant colors, high achievable display resolution, and comparably simple processing. Since they are not based on the rigid crystal structure of classical semiconductors and can be produced as planar thin-film modules, they also enable the fabrication of large-area lamps on flexible substrates – an attractive scenario for future lighting systems. Despite these promising properties, the breakthrough of OLED lighting technology is still pending and requires further research. The charge-carrier dynamics in an OLED determine its device functionality and, therefore, enable the understanding of fundamental physical concepts and phenomena. From the description of charge-carrier dynamics, this work derives experimental methods and device concepts to optimize the efficiency and stability of OLEDs. OLEDs feature an electric current of charge carriers (electrons and holes) that are intended to recombine under the emission of light. This process is preceded by charge-carrier injection and their transport to the emission layer. These three aspects are discussed together in this work. First, a method is presented that quantifies injection resistances using a simple experiment. It provides a valuable opportunity to better understand and optimize injection layers. Subsequently, the charge carrier transport at high electrical currents, as required for OLEDs as bright lighting elements, will be investigated. Here, electro-thermal effects are presented that form physical limits for the design and function of OLED modules and explain their sudden failure. Finally, the dynamics and recombination of electro-statically bound charge carrier pairs, so-called excitons, are examined. Various options are presented for manipulating exciton dynamics in such a way that the emission behavior of the OLED can be adjusted according to specific requirements.:List of publications . . . . . . . . . . . . . . . . . v List of abbreviations . . . . . . . . . . . . . . . . . ix 1 Introduction . . . . . . . . . . . . . . . . . 1 2 Fundamentals . . . . . . . . . . . . . . . . . 5 2.1 Light sources and the human society . . . . . . . . . . . . . . . . . 5 2.1.1 Human light perception . . . . . . . . . . . . . . . . . . . . 8 2.1.2 Physical light quantification . . . . . . . . . . . . . . . . . . 10 2.1.3 Non-visual light impact . . . . . . . . . . . . . . . . . . . . . 13 2.1.4 Implications for modern light sources . . . . . . . . . . . . . 15 2.2 Organic semiconductors . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.1 Molecular energy states . . . . . . . . . . . . . . . . . . . . . 18 2.2.2 Intramolecular state transitions . . . . . . . . . . . . . . . . 24 2.2.3 Molecular films . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.4 Electrical doping . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.5 Charge-carrier transport . . . . . . . . . . . . . . . . . . . . 36 2.2.6 Exciton formation and recombination . . . . . . . . . . . . . 38 2.2.7 Exciton transfer . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.3 Organic light-emitting diodes . . . . . . . . . . . . . . . . . . . . . 44 2.3.1 Structure and operation principle . . . . . . . . . . . . . . . 44 2.3.2 Metal-semiconductor interfaces . . . . . . . . . . . . . . . . 47 2.3.3 Typical operation characteristics . . . . . . . . . . . . . . . . 49 2.4 Colloidal nanocrystal emitters . . . . . . . . . . . . . . . . . . . . . 52 2.4.1 Terminology: Nanocrystals and quantum dots . . . . . . . . 52 2.4.2 The particle-in-a-box model . . . . . . . . . . . . . . . . . . 54 2.4.3 Surface passivation . . . . . . . . . . . . . . . . . . . . . . . 55 3 Materials and methods . . . . . . . . . . . . . . . . . 57 3.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.1.1 OLED materials . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.1.2 Materials for photoluminescence . . . . . . . . . . . . . . . . 60 3.2 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.2.1 Thermal evaporation . . . . . . . . . . . . . . . . . . . . . . 62 3.2.2 Solution processing . . . . . . . . . . . . . . . . . . . . . . . 64 3.3 Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3.1 Absorbance spectroscopy . . . . . . . . . . . . . . . . . . . . 66 3.3.2 Photoluminescence quantum yield . . . . . . . . . . . . . . . 66 3.3.3 Excitation sources . . . . . . . . . . . . . . . . . . . . . . . 67 3.3.4 Sensitive EQE for absorber materials . . . . . . . . . . . . . 68 3.4 Exciton-lifetime analysis . . . . . . . . . . . . . . . . . . . . . . . . 69 3.4.1 Triplet lifetime . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.4.2 Singlet-state lifetime . . . . . . . . . . . . . . . . . . . . . . 70 3.4.3 Lifetime extraction . . . . . . . . . . . . . . . . . . . . . . . 70 3.5 OLED characterization . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.5.1 Current-voltage-luminance and quantum efficiency . . . . . . 73 3.5.2 Temperature-controlled evaluation . . . . . . . . . . . . . . . 74 4 Charge-carrier injection into doped organic films . . . . . . . . . . . . . . . . . 77 4.1 Ohmic injection contacts . . . . . . . . . . . . . . . . . . . . . . . . 79 4.2 Device architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.1 Conception . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.2 Device symmetry . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.3 Device homogeneity . . . . . . . . . . . . . . . . . . . . . . . 83 4.3 Resistance characteristics . . . . . . . . . . . . . . . . . . . . . . . . 84 4.3.1 Experimental results . . . . . . . . . . . . . . . . . . . . . . 84 4.3.2 Equivalent-circuit development . . . . . . . . . . . . . . . . 85 4.4 Impedance spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . 92 4.4.1 Measurement fundamentals . . . . . . . . . . . . . . . . . . 92 4.4.2 Thickness dependence . . . . . . . . . . . . . . . . . . . . . 93 4.4.3 Temperature dependence . . . . . . . . . . . . . . . . . . . . 95 4.5 Depletion zone variation . . . . . . . . . . . . . . . . . . . . . . . . 97 4.6 Molybdenum oxide as a case study . . . . . . . . . . . . . . . . . . 99 5 Charge-carrier transport and self-heating in OLED lighting . . . . . . . . . . . . . . . . .101 5.1 Joule self-heating in OLEDs . . . . . . . . . . . . . . . . . . . . . . 104 5.1.1 Electrothermal feedback . . . . . . . . . . . . . . . . . . . . 104 5.1.2 Thermistors . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.1.3 Cooling strategies . . . . . . . . . . . . . . . . . . . . . . . . 106 5.2 Self-heating causes lateral luminance inhomogeneities in OLEDs . . 108 5.2.1 The influence of transparent electrodes . . . . . . . . . . . . 108 5.2.2 Luminance inhomogeneities in large OLED panels . . . . . . 110 5.3 Electrothermal OLED models . . . . . . . . . . . . . . . . . . . . . 112 5.3.1 Perceiving an OLED as thermistor array . . . . . . . . . . . 112 5.3.2 The OLED as a single three-layer thermistor . . . . . . . . . 114 5.3.3 A numerical 3D model of heat and current flow . . . . . . . 116 5.4 OLED stack and experimental conception . . . . . . . . . . . . . . 118 5.5 The Switch-back effect in planar light sources . . . . . . . . . . . . 120 5.5.1 Predictions from numerical 3D modeling . . . . . . . . . . . 121 5.5.2 Experimental proof . . . . . . . . . . . . . . . . . . . . . . . 124 5.5.3 Variation of vertical heat flux . . . . . . . . . . . . . . . . . 127 5.5.4 Variation of the OLED area . . . . . . . . . . . . . . . . . . 131 5.6 Electrothermal tristabilities in OLEDs . . . . . . . . . . . . . . . . 133 5.6.1 Observing different burn-in schematics . . . . . . . . . . . . 133 5.6.2 Bistability and tristability in organic semiconductors . . . . 134 5.6.3 Experimental indications for attempted branch hopping . . . 138 5.6.4 Saving bright OLEDs from burning in . . . . . . . . . . . . 144 5.6.5 Taking another view onto the camera pictures . . . . . . . . 145 6 Charge-carrier recombination and exciton management . . . . . . . . . . . . . . . . .147 6.1 Optical down conversion . . . . . . . . . . . . . . . . . . . . . . . . 149 6.1.1 Spectral reshaping of visible OLEDs . . . . . . . . . . . . . 149 6.1.2 Infrared-emitting OLEDs . . . . . . . . . . . . . . . . . . . . 155 6.2 Dual-state Förster transfer . . . . . . . . . . . . . . . . . . . . . . . 158 6.2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 6.2.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 6.3 Singlet fission and triplet fusion in rubrene . . . . . . . . . . . . . . 161 6.3.1 Photoluminescence of pure and doped rubrene films . . . . . 163 6.3.2 Electroluminescence transients of rubrene OLEDs . . . . . . 172 6.4 Charge transfer-state tuning by electric fields . . . . . . . . . . . . . 177 6.4.1 CT-state tuning via doping variation . . . . . . . . . . . . . 177 6.4.2 CT-state tuning via voltage . . . . . . . . . . . . . . . . . . 180 6.5 Excursus: Exciton-spin mixing for wavelength identification . . . . 183 6.5.1 Characteristics of the active film . . . . . . . . . . . . . . . . 184 6.5.2 Conception . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 6.5.3 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 6.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 6.5.5 Application demonstrations . . . . . . . . . . . . . . . . . . 192 6.5.6 All-organic device . . . . . . . . . . . . . . . . . . . . . . . . 195 6.5.7 Device limitations and prospects . . . . . . . . . . . . . . . . 198 7 Conclusion and outlook . . . . . . . . . . . . . . . . . 207 7.1 Charge-carrier injection into doped films . . . . . . . . . . . . . . . 207 7.2 Charge-carrier transport in hot OLEDs . . . . . . . . . . . . . . . . 208 7.2.1 Prospects for OLED lighting facing tristable behavior . . . . 209 7.2.2 Outlook: Accessing the hidden PDR 2 region . . . . . . . . . 210 7.3 Charge-carrier recombination and spin mixing . . . . . . . . . . . . 211 7.3.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 7.3.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 Bibliography. . . . . . . . . . . . . . . . . 215 Acknowledgements . . . . . . . . . . . . . . . . . 249Wer sich heute fĂŒr ein neues Mobiltelefon entscheidet, kauft damit wahrscheinlich einen Bildschirm aus organischen Leuchtdioden (OLEDs). Durch ihre brillanten Farben, die hohe erreichbare Auflösung und eine vergleichsweise einfache Prozessierung werden OLEDs als relativ neue Bildschirmtechnologie in den nĂ€chsten Jahren wohl den grĂ¶ĂŸten Marktanteil ausmachen. Da sie nicht auf der starren Kristallstruktur klassischer Halbleiter beruhen und als planare DĂŒnnschichtmodule produziert werden können, ermöglichen sie außerdem die Fertigung großer FlĂ€chenstrahler auf flexiblen Substraten – ein sehr attraktives Szenario fĂŒr zukĂŒnftige Beleuchtungssysteme. Trotz dieser vielversprechenden Eigenschaften steht der Durchbruch der OLED-Technologie als Leuchtmittel noch aus und erfordert weitere Forschung. Die Dynamik der LadungstrĂ€ger (Elektronen und Löcher) in einer OLED charakterisiert wichtige Teile der Bauteilfunktion und ermöglicht daher das VerstĂ€ndnis grundlegender physikalischer Konzepte und PhĂ€nomene. Diese Arbeit leitet anhand dieser Beschreibung experimentelle Methoden und Bauteilkonzepte ab, um die Effizienz und StabilitĂ€t von OLEDs zu optimieren. OLEDs zeichnen sich dadurch aus, dass ein elektrischer Strom aus LadungstrĂ€gern (Elektronen und Löchern) möglichst effizient unter Aussendung von Licht rekombiniert. Diesem Prozess geht eine LadungstrĂ€gerinjektion und deren Transport zur Emissionsschicht voraus. Diese drei Aspekte werden in dieser Arbeit zusammenhĂ€ngend diskutiert. Als erstes wird eine Methode vorgestellt, die InjektionswiderstĂ€nde anhand eines einfachen Experimentes quantifiziert. Sie bildet eine wertvolle Möglichkeit, Injektionsschichten besser zu verstehen und zu optimieren. Anschließend wird der LadungstrĂ€gertransport bei hohen elektrischen Strömen untersucht, wie sie fĂŒr OLEDs als helle Beleuchtungselemente nötig sind. Hier werden elektro-thermische Effekte vorgestellt, die physikalische Grenzen fĂŒr das Design und die Funktion von OLED Modulen bilden und deren plötzliches Versagen erklĂ€ren. Abschließend wird die Dynamik der stark elektrostatisch gebundenen LadungstrĂ€gerpaare, sogenannter Exzitonen, kurz vor deren Rekombination untersucht. Es werden verschiedene Möglichkeiten vorgestellt sie so zu manipulieren, dass sich das Abstrahlverhalten der OLED anhand bestimmter Anforderungen einstellen lĂ€sst.:List of publications . . . . . . . . . . . . . . . . . v List of abbreviations . . . . . . . . . . . . . . . . . ix 1 Introduction . . . . . . . . . . . . . . . . . 1 2 Fundamentals . . . . . . . . . . . . . . . . . 5 2.1 Light sources and the human society . . . . . . . . . . . . . . . . . 5 2.1.1 Human light perception . . . . . . . . . . . . . . . . . . . . 8 2.1.2 Physical light quantification . . . . . . . . . . . . . . . . . . 10 2.1.3 Non-visual light impact . . . . . . . . . . . . . . . . . . . . . 13 2.1.4 Implications for modern light sources . . . . . . . . . . . . . 15 2.2 Organic semiconductors . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.1 Molecular energy states . . . . . . . . . . . . . . . . . . . . . 18 2.2.2 Intramolecular state transitions . . . . . . . . . . . . . . . . 24 2.2.3 Molecular films . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.4 Electrical doping . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.5 Charge-carrier transport . . . . . . . . . . . . . . . . . . . . 36 2.2.6 Exciton formation and recombination . . . . . . . . . . . . . 38 2.2.7 Exciton transfer . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.3 Organic light-emitting diodes . . . . . . . . . . . . . . . . . . . . . 44 2.3.1 Structure and operation principle . . . . . . . . . . . . . . . 44 2.3.2 Metal-semiconductor interfaces . . . . . . . . . . . . . . . . 47 2.3.3 Typical operation characteristics . . . . . . . . . . . . . . . . 49 2.4 Colloidal nanocrystal emitters . . . . . . . . . . . . . . . . . . . . . 52 2.4.1 Terminology: Nanocrystals and quantum dots . . . . . . . . 52 2.4.2 The particle-in-a-box model . . . . . . . . . . . . . . . . . . 54 2.4.3 Surface passivation . . . . . . . . . . . . . . . . . . . . . . . 55 3 Materials and methods . . . . . . . . . . . . . . . . . 57 3.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.1.1 OLED materials . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.1.2 Materials for photoluminescence . . . . . . . . . . . . . . . . 60 3.2 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.2.1 Thermal evaporation . . . . . . . . . . . . . . . . . . . . . . 62 3.2.2 Solution processing . . . . . . . . . . . . . . . . . . . . . . . 64 3.3 Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3.1 Absorbance spectroscopy . . . . . . . . . . . . . . . . . . . . 66 3.3.2 Photoluminescence quantum yield . . . . . . . . . . . . . . . 66 3.3.3 Excitation sources . . . . . . . . . . . . . . . . . . . . . . . 67 3.3.4 Sensitive EQE for absorber materials . . . . . . . . . . . . . 68 3.4 Exciton-lifetime analysis . . . . . . . . . . . . . . . . . . . . . . . . 69 3.4.1 Triplet lifetime . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.4.2 Singlet-state lifetime . . . . . . . . . . . . . . . . . . . . . . 70 3.4.3 Lifetime extraction . . . . . . . . . . . . . . . . . . . . . . . 70 3.5 OLED characterization . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.5.1 Current-voltage-luminance and quantum efficiency . . . . . . 73 3.5.2 Temperature-controlled evaluation . . . . . . . . . . . . . . . 74 4 Charge-carrier injection into doped organic films . . . . . . . . . . . . . . . . . 77 4.1 Ohmic injection contacts . . . . . . . . . . . . . . . . . . . . . . . . 79 4.2 Device architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.1 Conception . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.2 Device symmetry . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.3 Device homogeneity . . . . . . . . . . . . . . . . . . . . . . . 83 4.3 Resistance characteristics . . . . . . . . . . . . . . . . . . . . . . . . 84 4.3.1 Experimental results . . . . . . . . . . . . . . . . . . . . . . 84 4.3.2 Equivalent-circuit development . . . . . . . . . . . . . . . . 85 4.4 Impedance spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . 92 4.4.1 Measurement fundamentals . . . . . . . . . . . . . . . . . . 92 4.4.2 Thickness dependence . . . . . . . . . . . . . . . . . . . . . 93 4.4.3 Temperature dependence . . . . . . . . . . . . . . . . . . . . 95 4.5 Depletion zone variation . . . . . . . . . . . . . . . . . . . . . . . . 97 4.6 Molybdenum oxide as a case study . . . . . . . . . . . . . . . . . . 99 5 Charge-carrier transport and self-heating in OLED lighting . . . . . . . . . . . . . . . . .101 5.1 Joule self-heating in OLEDs . . . . . . . . . . . . . . . . . . . . . . 104 5.1.1 Electrothermal feedback . . . . . . . . . . . . . . . . . . . . 104 5.1.2 Thermistors . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.1.3 Cooling strategies . . . . . . . . . . . . . . . . . . . . . . . . 106 5.2 Self-heating causes lateral luminance inhomogeneities in OLEDs . . 108 5.2.1 The influence of transparent electrodes . . . . . . . . . . . . 108 5.2.2 Luminance inhomogeneities in large OLED panels . . . . . . 110 5.3 Electrothermal OLED models . . . . . . . . . . . . . . . . . . . . . 112 5.3.1 Perceiving an OLED as thermistor array . . . . . . . . . . . 112 5.3.2 The OLED as a single three-layer thermistor . . . . . . . . . 114 5.3.3 A numerical 3D model of heat and current flow . . . . . . . 116 5.4 OLED stack and experimental conception . . . . . . . . . . . . . . 118 5.5 The Switch-back effect in planar light sources . . . . . . . . . . . . 120 5.5.1 Predictions from numerical 3D modeling . . . . . . . . . . . 121 5.5.2 Experimental proof . . . . . . . . . . . . . . . . . . . . . . . 124 5.5.3 Variation of vertical heat flux . . . . . . . . . . . . . . . . . 127 5.5.4 Variation of the OLED area . . . . . . . . . . . . . . . . . . 131 5.6 Electrothermal tristabilities in OLEDs . . . . . . . . . . . . . . . . 133 5.6.1 Observing different burn-in schematics . . . . . . . . . . . . 133 5.6.2 Bistability and tristability in organic semiconductors . . . . 134 5.6.3 Experimental indications for attempted branch hopping . . . 138 5.6.4 Saving bright OLEDs from burning in . . . . . . . . . . . . 144 5.6.5 Taking another view onto the camera pictures . . . . . . . . 145 6 Charge-carrier recombination and exciton management . . . . . . . . . . . . . . . . .147 6.1 Optical down conversion . . . . . . . . . . . . . . . . . . . . . . . . 149 6.1.1 Spectral reshaping of visible OLEDs . . . . . . . . . . . . . 149 6.1.2 Infrared-emitting OLEDs . . . . . . . . . . . . . . . . . . . . 155 6.2 Dual-state Förster transfer . . . . . . . . . . . . . . . . . . . . . . . 158 6.2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 6.2.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 6.3 Singlet fission and triplet fusion in rubrene . . . . . . . . . . . . . . 161 6.3.1 Photoluminescence of pure and doped rubrene films . . . . . 163 6.3.2 Electroluminescence transients of rubrene OLEDs . . . . . . 172 6.4 Charge transfer-state tuning by electric fields . . . . . . . . . . . . . 177 6.4.1 CT-state tuning via doping variation . . . . . . . . . . . . . 177 6.4.2 CT-state tuning via voltage . . . . . . . . . . . . . . . . . . 180 6.5 Excursus: Exciton-spin mixing for wavelength identification . . . . 183 6.5.1 Characteristics of the active film . . . . . . . . . . . . . . . . 184 6.5.2 Conception . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 6.5.3 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 6.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 6.5.5 Application demonstrations . . . . . . . . . . . . . . . . . . 192 6.5.6 All-organic device . . . . . . . . . . . . . . . . . . . . . . . . 195 6.5.7 Device limitations and prospects . . . . . . . . . . . . . . . . 198 7 Conclusion and outlook . . . . . . . . . . . . . . . . . 207 7.1 Charge-carrier injection into doped films . . . . . . . . . . . . . . . 207 7.2 Charge-carrier transport in hot OLEDs . . . . . . . . . . . . . . . . 208 7.2.1 Prospects for OLED lighting facing tristable behavior . . . . 209 7.2.2 Outlook: Accessing the hidden PDR 2 region . . . . . . . . . 210 7.3 Charge-carrier recombination and spin mixing . . . . . . . . . . . . 211 7.3.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 7.3.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 Bibliography. . . . . . . . . . . . . . . . . 215 Acknowledgements . . . . . . . . . . . . . . . . . 24

    Functional engineering of hybrid heterostructures for application in electronic, optical and optoelectronic nanostructured devices

    Get PDF
    Interfacing materials with different intrinsic chemical-physical characteristics allows for the generation of a new system with multifunctional features. Here, this original concept is implemented for tailoring the functional properties of bi-dimensional black phosphorus (2D bP or phosphorene) and organic light-emitting transistors (OLETs). Phosphorene is highly reactive under atmospheric conditions and its small-area/lab-scale deposition techniques have hampered the introduction of this material in real-world applications so far. The protection of 2D bP against the oxygen by means of functionalization with alkane molecules and pyrene derivatives, showed long-term stability with respect to the bare 2D bP by avoiding remarkable oxidation up to 6 months, paving the way towards ultra-sensitive oxygen chemo-sensors. A new approach of deposition-precipitation heterogeneous reaction was developed to decorate 2D bP with Au nanoparticles (NP)s, obtaining a “stabilizer-free” that may broaden the possible applications of the 2D bP/Au NPs interface in catalysis and biodiagnostics. Finally, 2D bP was deposited by electrospray technique, obtaining oxidized-phosphorous flakes as wide as hundreds of ”m2 and providing for the first time a phosphorous-based bidimensional system responsive to electromechanical stimuli. The second part of the thesis focuses on the study of organic heterostructures in ambipolar OLET devices, intriguing optoelectronic devices that couple the micro-scaled light-emission with electrical switching. Initially, an ambipolar single-layer OLET based on a multifunctional organic semiconductor, is presented. The bias-depending light-emission shifted within the transistor channel, as expected in well-balanced ambipolar OLETs. However, the emitted optical power of the single layer-based device was unsatisfactory. To improve optoelectronic performance of the device, a multilayer organic architecture based on hole-transporting semiconductor, emissive donor-acceptor blend and electron-transporting semiconductor was optimized. We showed that the introduction of a suitable electron-injecting layer at the interface between the electron-transporting and light-emission layers may enable a ≈ 2× improvement of efficiency at reduced applied bias

    Integer and Fractional Charge Transfer in the Doping of Poly- and Oligothiophenes

    Get PDF
    In the p-doping of organic semiconductors with small molecular dopants integer-charge transfer forming ion-pairs (IPAs) and fractional charge transfer through the formation of ground state charge-transfer complexes (CPXs) have been identified as competing fundamental processes. IPAs and CPXs differently affect the performance of doped organic electronic devices, however, the conditions leading to either phenomenon are still to be fully understood. This thesis focuses on the conjugated polymer poly(3-hexylthiophene) (P3HT) p-doped with the strong molecular electron acceptor tetrafluorotetracyanoquinodimethane (F4TCNQ) and its derivatives of lower electron affinity (F2TCNQ, FTCNQ, TCNQ). Under consideration of their different dopant strengths, the role of the critical dopant concentration promoting the one phenomenon over the other is investigated. Cyclic voltammetry is used to determine ionization energy and electron affinity values of the materials involved to gauge their influence on IPA and CPX occurrence, as identified through optical and vibrational spectroscopy. Supported by electrostatic modeling taking into account the width of the Gaussian density of states (DOS) related to the highest occupied molecular orbital in P3HT, DOS broadening upon doping is considered to explain IPA formation with weaker dopants. Grazing incidence x-ray diffraction is employed toassess the interplay between the supramolecular structure and the two doping phenomena, supporting the hypothesis that a CPX polymorph can occurs that effectively prevents IPA formation for a given host-dopant stoichiometry. Conductivity data on doped films highlights the application-related impacts of these findings. Finally, for a series of custom thiophene oligomers of different lengths, instead of P3HT, the common observation of CPX formation being promoted in the molecular doping of (small) conjugated molecules is investigated. The threshold of transition into the doping phenomenology of the polymer limit is observed at a chain length of 10 thiophene units - a parameter to be considered when employing oligothiophene semiconductors in applications demanding molecular doping. Overall, due the multi-technique approach targeting doping phenomena and mechanisms of a prototypical polymer and oligomer equivalents doped with a systematic series of p-dopants, the database presented here provides a consistent and coherent point of reference for assessing the performance and phenomenology encountered with novel dopants

    Printed and flexible organic and inorganic memristor devices for non-volatile memory applications

    Get PDF
    The electronics market is highly competitive and driven by consumers desire for the latest and most sophisticated devices at the lowest cost. In the last decade there has been increasing interest in printing electronic materials on lightweight and flexible substrates such as plastics and fabrics. This not only lowers fabrication and capital costs but also facilitates many new applications, such as flexible displays and wearable electronics. The printing of computer memory is also desirable since many of these applications require memory to store and process information. In addition, there is now an international effort to develop new types of computer memory that consume ultra-low levels of power. This is not only to lower energy usage worldwide, which is important for reducing CO2 emissions, but it also enables a longer period between the re-charging of devices such as mobile phones, music players and fitness bands. Memory that is non-volatile is an obvious choice since it does not consume power to retain information like conventional SRAM and DRAM. Memristors (or memory resistor) are a new type of memory that are intrinsically non-volatile in nature. Their simple two-terminal architecture, easy method of fabrication and low power consumption means they have received much attention from both the research community and industry. Devices with the lowest fabrication costs are made from organic or hybrid (organic–inorganic) composite materials because of the ability to use low-cost solution processing methods with the advantages of large area deposition under vacuum-free and room temperature ambient conditions. Memristors have excellent device properties, including a large resistance Off/On ratio (up to 5 orders of magnitude), fast switching speeds (less than 15 ns), long endurance (over 1012 cycles), long data storage retention time (∌10 years) and high scalability down to nanoscale dimensions. In this article we review progress in the field of printed and flexible memristor devices and discuss their potential across a wide range of applications

    Towards a circular economy: fabrication and characterization of biodegradable plates from sugarcane waste

    Get PDF
    Bagasse pulp is a promising material to produce biodegradable plates. Bagasse is the fibrous residue that remains after sugarcane stalks are crushed to extract their juice. It is a renewable resource and is widely available in many countries, making it an attractive alternative to traditional plastic plates. Recent research has shown that biodegradable plates made from Bagasse pulp have several advantages over traditional plastic plates. For example, they are more environmentally friendly because they are made from renewable resources and can be composted after use. Additionally, they are safer for human health because they do not contain harmful chemicals that can leach into food. The production process for Bagasse pulp plates is also relatively simple and cost-effective. Bagasse is first collected and then processed to remove impurities and extract the pulp. The pulp is then molded into the desired shape and dried to form a sturdy plate. Overall, biodegradable plates made from Bagasse pulp are a promising alternative to traditional plastic plates. They are environmentally friendly, safe for human health, and cost-effective to produce. As such, they have the potential to play an important role in reducing plastic waste and promoting sustainable practices. Over the years, the world was not paying strict attention to the impact of rapid growth in plastic use. As a result, uncontrollable volumes of plastic garbage have been released into the environment. Half of all plastic garbage generated worldwide is made up of packaging materials. The purpose of this article is to offer an alternative by creating bioplastic goods that can be produced in various shapes and sizes across various sectors, including food packaging, single-use tableware, and crafts. Products made from bagasse help address the issue of plastic pollution. To find the optimum option for creating bagasse-based biodegradable dinnerware in Egypt and throughout the world, researchers tested various scenarios. The findings show that bagasse pulp may replace plastics in biodegradable packaging. As a result of this value-added utilization of natural fibers, less waste and less of it ends up in landfills. The practical significance of this study is to help advance low-carbon economic solutions and to produce secure bioplastic materials that can replace Styrofoam in tableware and food packaging production

    Modern Applications in Optics and Photonics: From Sensing and Analytics to Communication

    Get PDF
    Optics and photonics are among the key technologies of the 21st century, and offer potential for novel applications in areas such as sensing and spectroscopy, analytics, monitoring, biomedical imaging/diagnostics, and optical communication technology. The high degree of control over light fields, together with the capabilities of modern processing and integration technology, enables new optical measurement systems with enhanced functionality and sensitivity. They are attractive for a range of applications that were previously inaccessible. This Special Issue aims to provide an overview of some of the most advanced application areas in optics and photonics and indicate the broad potential for the future
    • 

    corecore