89,188 research outputs found

    Spin Gap of S=1/2 Heisenberg Model on Distorted Diamond Chain

    Full text link
    We study the spin gap of the S=1/2 Heisenberg model on the distorted diamond chain, which is recently proposed to represent magnetic properties of Cu_3 Cl_6 (H_2 O)_2 2H_8 C_4 SO_2. This model is composed of stacked trimers and has three kinds of exchange interactions J_1, J_2 and J_3. Using the numerical diagonalization, we obtain a contour map of the spin gap in the J_2/J_1-J_3/J_1 plane. We argue possible values of the exchange constants based on the contour map and the observed value of the spin gap.Comment: 2 pages, 4 figure

    The continuous spin random field model: Ferromagnetic ordering in d>=3

    Get PDF
    We investigate the Gibbs-measures of ferromagnetically coupled continuous spins in double-well potentials subjected to a random field (our specific example being the ϕ4\phi^4 theory), showing ferromagnetic ordering in d≥3d\geq 3 dimensions for weak disorder and large energy barriers. We map the random continuous spin distributions to distributions for an Ising-spin system by means of a single-site coarse-graining method described by local transition kernels. We derive a contour- representation for them with notably positive contour activities and prove their Gibbsianness. This representation is shown to allow for application of the discrete-spin renormalization group developed by Bricmont/Kupiainen implying the result in d≥3d\geq 3.Comment: 46 page

    Quasiparticle Interference on the Surface of the Topological Insulator Bi2_2Te3_3

    Full text link
    The quasiparticle interference of the spectroscopic imaging scanning tunneling microscopy has been investigated for the surface states of the large gap topological insulator Bi2_2Te3_3 through the T-matrix formalism. Both the scalar potential scattering and the spin-orbit scattering on the warped hexagonal isoenergy contour are considered. While backscatterings are forbidden by time-reversal symmetry, other scatterings are allowed and exhibit strong dependence on the spin configurations of the eigenfunctions at k points over the isoenergy contour. The characteristic scattering wavevectors found in our analysis agree well with recent experiment results.Comment: 5 pages, 2 figures, Some typos are correcte

    Final Analysis and Results of the Phase II SIMPLE Dark Matter Search

    Full text link
    We report the final results of the Phase II SIMPLE measurements, comprising two run stages of 15 superheated droplet detectors each, the second stage including an improved neutron shielding. The analyses includes a refined signal analysis, and revised nucleation efficiency based on reanalysis of previously-reported monochromatic neutron irradiations. The combined results yield a contour minimum of \sigma_{p} = 4.2 x 10^-3 pb at 35 GeV/c^2 on the spin-dependent sector of WIMP-proton interactions, the most restrictive to date from a direct search experiment and overlapping for the first time results previously obtained only indirectly. In the spin-independent sector, a minimum of 3.6 x 10^-6 pb at 35 GeV/c^2 is achieved, with the exclusion contour challenging the recent CoGeNT region of current interest.Comment: revised, PRL-accepted version with slightly weakened limit contour

    Effective mass suppression upon complete spin-polarization in an isotropic two-dimensional electron system

    Full text link
    We measure the effective mass (m*) of interacting two-dimensional electrons confined to a 4.5 nm-wide AlAs quantum well. The electrons in this well occupy a single out-of-plane conduction band valley with an isotropic in-plane Fermi contour. When the electrons are partially spin polarized, m* is larger than its band value and increases as the density is reduced. However, as the system is driven to full spin-polarization via the application of a strong parallel magnetic field, m* is suppressed down to values near or even below the band mass. Our results are consistent with the previously reported measurements on wide AlAs quantum wells where the electrons occupy an in-plane valley with an anisotropic Fermi contour and effective mass, and suggest that the effective mass suppression upon complete spin polarization is a genuine property of interacting two-dimensional electrons.Comment: 6 pages, 7 figures, accepted for publication in Phys. Rev.

    Unconventional spin texture of a topologically nontrivial semimetal Sb(110)

    Get PDF
    The surfaces of antimony are characterized by the presence of spin-split states within the projected bulk band gap and the Fermi contour is thus expected to exhibit a spin texture. Using spin-resolved density functional theory calculations, we determine the spin polarization of the surface bands of Sb(110). The existence of the unconventional spin texture is corroborated by the investigations of the electron scattering on this surface. The charge interference patterns formed around single scattering impurities, imaged by scanning tunneling microscopy, reveal the absence of direct backscattering signal. We identify the allowed scattering vectors and analyze their bias evolution in relation to the surface-state dispersion.Comment: 10 pages, 5 figure

    Orbit- and Atom-Resolved Spin Textures of Intrinsic, Extrinsic and Hybridized Dirac Cone States

    Full text link
    Combining first-principles calculations and spin- and angle-resolved photoemission spectroscopy measurements, we identify the helical spin textures for three different Dirac cone states in the interfaced systems of a 2D topological insulator (TI) of Bi(111) bilayer and a 3D TI Bi2Se3 or Bi2Te3. The spin texture is found to be the same for the intrinsic Dirac cone of Bi2Se3 or Bi2Te3 surface state, the extrinsic Dirac cone of Bi bilayer state induced by Rashba effect, and the hybridized Dirac cone between the former two states. Further orbit- and atom-resolved analysis shows that s and pz orbits have a clockwise (counterclockwise) spin rotation tangent to the iso-energy contour of upper (lower) Dirac cone, while px and py orbits have an additional radial spin component. The Dirac cone states may reside on different atomic layers, but have the same spin texture. Our results suggest that the unique spin texture of Dirac cone states is a signature property of spin-orbit coupling, independent of topology

    Numerically improved computational scheme for the optical conductivity tensor in layered systems

    Full text link
    The contour integration technique applied to calculate the optical conductivity tensor at finite temperatures in the case of layered systems within the framework of the spin-polarized relativistic screened Korringa-Kohn-Rostoker band structure method is improved from the computational point of view by applying the Gauss-Konrod quadrature for the integrals along the different parts of the contour and by designing a cumulative special points scheme for two-dimensional Brillouin zone integrals corresponding to cubic systems.Comment: 17 pages, LaTeX + 4 figures (Encapsulated PostScript), submitted to J. Phys.: Condensed Matter (19 Sept. 2000
    • …
    corecore