7,241 research outputs found

    OR Residual Connection Achieving Comparable Accuracy to ADD Residual Connection in Deep Residual Spiking Neural Networks

    Full text link
    Spiking Neural Networks (SNNs) have garnered substantial attention in brain-like computing for their biological fidelity and the capacity to execute energy-efficient spike-driven operations. As the demand for heightened performance in SNNs surges, the trend towards training deeper networks becomes imperative, while residual learning stands as a pivotal method for training deep neural networks. In our investigation, we identified that the SEW-ResNet, a prominent representative of deep residual spiking neural networks, incorporates non-event-driven operations. To rectify this, we introduce the OR Residual connection (ORRC) to the architecture. Additionally, we propose the Synergistic Attention (SynA) module, an amalgamation of the Inhibitory Attention (IA) module and the Multi-dimensional Attention (MA) module, to offset energy loss stemming from high quantization. When integrating SynA into the network, we observed the phenomenon of "natural pruning", where after training, some or all of the shortcuts in the network naturally drop out without affecting the model's classification accuracy. This significantly reduces computational overhead and makes it more suitable for deployment on edge devices. Experimental results on various public datasets confirmed that the SynA enhanced OR-Spiking ResNet achieved single-sample classification with as little as 0.8 spikes per neuron. Moreover, when compared to other spike residual models, it exhibited higher accuracy and lower power consumption. Codes are available at https://github.com/Ym-Shan/ORRC-SynA-natural-pruning.Comment: 16 pages, 8 figures and 11table

    Multi-Level Firing with Spiking DS-ResNet: Enabling Better and Deeper Directly-Trained Spiking Neural Networks

    Full text link
    Spiking neural networks (SNNs) are bio-inspired neural networks with asynchronous discrete and sparse characteristics, which have increasingly manifested their superiority in low energy consumption. Recent research is devoted to utilizing spatio-temporal information to directly train SNNs by backpropagation. However, the binary and non-differentiable properties of spike activities force directly trained SNNs to suffer from serious gradient vanishing and network degradation, which greatly limits the performance of directly trained SNNs and prevents them from going deeper. In this paper, we propose a multi-level firing (MLF) method based on the existing spatio-temporal back propagation (STBP) method, and spiking dormant-suppressed residual network (spiking DS-ResNet). MLF enables more efficient gradient propagation and the incremental expression ability of the neurons. Spiking DS-ResNet can efficiently perform identity mapping of discrete spikes, as well as provide a more suitable connection for gradient propagation in deep SNNs. With the proposed method, our model achieves superior performances on a non-neuromorphic dataset and two neuromorphic datasets with much fewer trainable parameters and demonstrates the great ability to combat the gradient vanishing and degradation problem in deep SNNs.Comment: Accepted by the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22

    Going Deeper in Spiking Neural Networks: VGG and Residual Architectures

    Get PDF
    Over the past few years, Spiking Neural Networks (SNNs) have become popular as a possible pathway to enable low-power event-driven neuromorphic hardware. However, their application in machine learning have largely been limited to very shallow neural network architectures for simple problems. In this paper, we propose a novel algorithmic technique for generating an SNN with a deep architecture, and demonstrate its effectiveness on complex visual recognition problems such as CIFAR-10 and ImageNet. Our technique applies to both VGG and Residual network architectures, with significantly better accuracy than the state-of-the-art. Finally, we present analysis of the sparse event-driven computations to demonstrate reduced hardware overhead when operating in the spiking domain

    Spiking-YOLO: Spiking Neural Network for Energy-Efficient Object Detection

    Full text link
    Over the past decade, deep neural networks (DNNs) have demonstrated remarkable performance in a variety of applications. As we try to solve more advanced problems, increasing demands for computing and power resources has become inevitable. Spiking neural networks (SNNs) have attracted widespread interest as the third-generation of neural networks due to their event-driven and low-powered nature. SNNs, however, are difficult to train, mainly owing to their complex dynamics of neurons and non-differentiable spike operations. Furthermore, their applications have been limited to relatively simple tasks such as image classification. In this study, we investigate the performance degradation of SNNs in a more challenging regression problem (i.e., object detection). Through our in-depth analysis, we introduce two novel methods: channel-wise normalization and signed neuron with imbalanced threshold, both of which provide fast and accurate information transmission for deep SNNs. Consequently, we present a first spiked-based object detection model, called Spiking-YOLO. Our experiments show that Spiking-YOLO achieves remarkable results that are comparable (up to 98%) to those of Tiny YOLO on non-trivial datasets, PASCAL VOC and MS COCO. Furthermore, Spiking-YOLO on a neuromorphic chip consumes approximately 280 times less energy than Tiny YOLO and converges 2.3 to 4 times faster than previous SNN conversion methods.Comment: Accepted to AAAI 202

    MSS-DepthNet: Depth Prediction with Multi-Step Spiking Neural Network

    Full text link
    Event cameras are considered to have great potential for computer vision and robotics applications because of their high temporal resolution and low power consumption characteristics. However, the event stream output from event cameras has asynchronous, sparse characteristics that existing computer vision algorithms cannot handle. Spiking neural network is a novel event-based computational paradigm that is considered to be well suited for processing event camera tasks. However, direct training of deep SNNs suffers from degradation problems. This work addresses these problems by proposing a spiking neural network architecture with a novel residual block designed and multi-dimension attention modules combined, focusing on the problem of depth prediction. In addition, a novel event stream representation method is explicitly proposed for SNNs. This model outperforms previous ANN networks of the same size on the MVSEC dataset and shows great computational efficiency
    • …
    corecore