508 research outputs found

    Memory and information processing in neuromorphic systems

    Full text link
    A striking difference between brain-inspired neuromorphic processors and current von Neumann processors architectures is the way in which memory and processing is organized. As Information and Communication Technologies continue to address the need for increased computational power through the increase of cores within a digital processor, neuromorphic engineers and scientists can complement this need by building processor architectures where memory is distributed with the processing. In this paper we present a survey of brain-inspired processor architectures that support models of cortical networks and deep neural networks. These architectures range from serial clocked implementations of multi-neuron systems to massively parallel asynchronous ones and from purely digital systems to mixed analog/digital systems which implement more biological-like models of neurons and synapses together with a suite of adaptation and learning mechanisms analogous to the ones found in biological nervous systems. We describe the advantages of the different approaches being pursued and present the challenges that need to be addressed for building artificial neural processing systems that can display the richness of behaviors seen in biological systems.Comment: Submitted to Proceedings of IEEE, review of recently proposed neuromorphic computing platforms and system

    Two Stream LSTM: A Deep Fusion Framework for Human Action Recognition

    Full text link
    In this paper we address the problem of human action recognition from video sequences. Inspired by the exemplary results obtained via automatic feature learning and deep learning approaches in computer vision, we focus our attention towards learning salient spatial features via a convolutional neural network (CNN) and then map their temporal relationship with the aid of Long-Short-Term-Memory (LSTM) networks. Our contribution in this paper is a deep fusion framework that more effectively exploits spatial features from CNNs with temporal features from LSTM models. We also extensively evaluate their strengths and weaknesses. We find that by combining both the sets of features, the fully connected features effectively act as an attention mechanism to direct the LSTM to interesting parts of the convolutional feature sequence. The significance of our fusion method is its simplicity and effectiveness compared to other state-of-the-art methods. The evaluation results demonstrate that this hierarchical multi stream fusion method has higher performance compared to single stream mapping methods allowing it to achieve high accuracy outperforming current state-of-the-art methods in three widely used databases: UCF11, UCFSports, jHMDB.Comment: Published as a conference paper at WACV 201
    • …
    corecore