709 research outputs found

    Neuro-Inspired Speech Recognition Based on Reservoir Computing

    Get PDF

    Bio-inspired multisensory integration of social signals

    Get PDF
    Emotions understanding represents a core aspect of human communication. Our social behaviours are closely linked to expressing our emotions and understanding others’ emotional and mental states through social signals. Emotions are expressed in a multisensory manner, where humans use social signals from different sensory modalities such as facial expression, vocal changes, or body language. The human brain integrates all relevant information to create a new multisensory percept and derives emotional meaning. There exists a great interest for emotions recognition in various fields such as HCI, gaming, marketing, and assistive technologies. This demand is driving an increase in research on multisensory emotion recognition. The majority of existing work proceeds by extracting meaningful features from each modality and applying fusion techniques either at a feature level or decision level. However, these techniques are ineffective in translating the constant talk and feedback between different modalities. Such constant talk is particularly crucial in continuous emotion recognition, where one modality can predict, enhance and complete the other. This thesis proposes novel architectures for multisensory emotions recognition inspired by multisensory integration in the brain. First, we explore the use of bio-inspired unsupervised learning for unisensory emotion recognition for audio and visual modalities. Then we propose three multisensory integration models, based on different pathways for multisensory integration in the brain; that is, integration by convergence, early cross-modal enhancement, and integration through neural synchrony. The proposed models are designed and implemented using third generation neural networks, Spiking Neural Networks (SNN) with unsupervised learning. The models are evaluated using widely adopted, third-party datasets and compared to state-of-the-art multimodal fusion techniques, such as early, late and deep learning fusion. Evaluation results show that the three proposed models achieve comparable results to state-of-the-art supervised learning techniques. More importantly, this thesis shows models that can translate a constant talk between modalities during the training phase. Each modality can predict, complement and enhance the other using constant feedback. The cross-talk between modalities adds an insight into emotions compared to traditional fusion techniques

    Spike encoding techniques for IoT time-varying signals benchmarked on a neuromorphic classification task

    Get PDF
    Spiking Neural Networks (SNNs), known for their potential to enable low energy consumption and computational cost, can bring significant advantages to the realm of embedded machine learning for edge applications. However, input coming from standard digital sensors must be encoded into spike trains before it can be elaborated with neuromorphic computing technologies. We present here a detailed comparison of available spike encoding techniques for the translation of time-varying signals into the event-based signal domain, tested on two different datasets both acquired through commercially available digital devices: the Free Spoken Digit dataset (FSD), consisting of 8-kHz audio files, and the WISDM dataset, composed of 20-Hz recordings of human activity through mobile and wearable inertial sensors. We propose a complete pipeline to benchmark these encoding techniques by performing time-dependent signal classification through a Spiking Convolutional Neural Network (sCNN), including a signal preprocessing step consisting of a bank of filters inspired by the human cochlea, feature extraction by production of a sonogram, transfer learning via an equivalent ANN, and model compression schemes aimed at resource optimization. The resulting performance comparison and analysis provides a powerful practical tool, empowering developers to select the most suitable coding method based on the type of data and the desired processing algorithms, and further expands the applicability of neuromorphic computational paradigms to embedded sensor systems widely employed in the IoT and industrial domains

    Brain at work : time, sparseness and superposition principles

    Get PDF
    Abstract : Many studies explored mechanisms through which the brain encodes sensory inputs allowing a coherent behavior. The brain could identify stimuli via a hierarchical stream of activity leading to a cardinal neuron responsive to one particular object. The opportunity to record from numerous neurons offered investigators the capability of examining simultaneously the functioning of many cells. These approaches suggested encoding processes that are parallel rather than serial. Binding the many features of a stimulus may be accomplished through an induced synchronization of cell’s action potentials. These interpretations are supported by experimental data and offer many advantages but also several shortcomings. We argue for a coding mechanism based on a sparse synchronization paradigm. We show that synchronization of spikes is a fast and efficient mode to encode the representation of objects based on feature bindings. We introduce the view that sparse synchronization coding presents an interesting venue in probing brain encoding mechanisms as it allows the functional establishment of multilayered and time-conditioned neuronal networks or multislice networks. We propose a model based on integrate-and-fire spiking neurons

    Bio-motivated features and deep learning for robust speech recognition

    Get PDF
    Mención Internacional en el título de doctorIn spite of the enormous leap forward that the Automatic Speech Recognition (ASR) technologies has experienced over the last five years their performance under hard environmental condition is still far from that of humans preventing their adoption in several real applications. In this thesis the challenge of robustness of modern automatic speech recognition systems is addressed following two main research lines. The first one focuses on modeling the human auditory system to improve the robustness of the feature extraction stage yielding to novel auditory motivated features. Two main contributions are produced. On the one hand, a model of the masking behaviour of the Human Auditory System (HAS) is introduced, based on the non-linear filtering of a speech spectro-temporal representation applied simultaneously to both frequency and time domains. This filtering is accomplished by using image processing techniques, in particular mathematical morphology operations with an specifically designed Structuring Element (SE) that closely resembles the masking phenomena that take place in the cochlea. On the other hand, the temporal patterns of auditory-nerve firings are modeled. Most conventional acoustic features are based on short-time energy per frequency band discarding the information contained in the temporal patterns. Our contribution is the design of several types of feature extraction schemes based on the synchrony effect of auditory-nerve activity, showing that the modeling of this effect can indeed improve speech recognition accuracy in the presence of additive noise. Both models are further integrated into the well known Power Normalized Cepstral Coefficients (PNCC). The second research line addresses the problem of robustness in noisy environments by means of the use of Deep Neural Networks (DNNs)-based acoustic modeling and, in particular, of Convolutional Neural Networks (CNNs) architectures. A deep residual network scheme is proposed and adapted for our purposes, allowing Residual Networks (ResNets), originally intended for image processing tasks, to be used in speech recognition where the network input is small in comparison with usual image dimensions. We have observed that ResNets on their own already enhance the robustness of the whole system against noisy conditions. Moreover, our experiments demonstrate that their combination with the auditory motivated features devised in this thesis provide significant improvements in recognition accuracy in comparison to other state-of-the-art CNN-based ASR systems under mismatched conditions, while maintaining the performance in matched scenarios. The proposed methods have been thoroughly tested and compared with other state-of-the-art proposals for a variety of datasets and conditions. The obtained results prove that our methods outperform other state-of-the-art approaches and reveal that they are suitable for practical applications, specially where the operating conditions are unknown.El objetivo de esta tesis se centra en proponer soluciones al problema del reconocimiento de habla robusto; por ello, se han llevado a cabo dos líneas de investigación. En la primera líınea se han propuesto esquemas de extracción de características novedosos, basados en el modelado del comportamiento del sistema auditivo humano, modelando especialmente los fenómenos de enmascaramiento y sincronía. En la segunda, se propone mejorar las tasas de reconocimiento mediante el uso de técnicas de aprendizaje profundo, en conjunto con las características propuestas. Los métodos propuestos tienen como principal objetivo, mejorar la precisión del sistema de reconocimiento cuando las condiciones de operación no son conocidas, aunque el caso contrario también ha sido abordado. En concreto, nuestras principales propuestas son los siguientes: Simular el sistema auditivo humano con el objetivo de mejorar la tasa de reconocimiento en condiciones difíciles, principalmente en situaciones de alto ruido, proponiendo esquemas de extracción de características novedosos. Siguiendo esta dirección, nuestras principales propuestas se detallan a continuación: • Modelar el comportamiento de enmascaramiento del sistema auditivo humano, usando técnicas del procesado de imagen sobre el espectro, en concreto, llevando a cabo el diseño de un filtro morfológico que captura este efecto. • Modelar el efecto de la sincroní que tiene lugar en el nervio auditivo. • La integración de ambos modelos en los conocidos Power Normalized Cepstral Coefficients (PNCC). La aplicación de técnicas de aprendizaje profundo con el objetivo de hacer el sistema más robusto frente al ruido, en particular con el uso de redes neuronales convolucionales profundas, como pueden ser las redes residuales. Por último, la aplicación de las características propuestas en combinación con las redes neuronales profundas, con el objetivo principal de obtener mejoras significativas, cuando las condiciones de entrenamiento y test no coinciden.Programa Oficial de Doctorado en Multimedia y ComunicacionesPresidente: Javier Ferreiros López.- Secretario: Fernando Díaz de María.- Vocal: Rubén Solera Ureñ

    Neural Models of Subcortical Auditory Processing

    Get PDF
    An important feature of the auditory system is its ability to distinguish many simultaneous sound sources. The primary goal of this work was to understand how a robust, preattentive analysis of the auditory scene is accomplished by the subcortical auditory system. Reasonably accurate modelling of the morphology and organisation of the relevant auditory nuclei, was seen as being of great importance. The formulation of plausible models and their subsequent simulation was found to be invaluable in elucidating biological processes and in highlighting areas of uncertainty. In the thesis, a review of important aspects of mammalian auditory processing is presented and used as a basis for the subsequent modelling work. For each aspect of auditory processing modelled, psychophysical results are described and existing models reviewed, before the models used here are described and simulated. Auditory processes which are modelled include the peripheral system, and the production of tonotopic maps of the spectral content of complex acoustic stimuli, and of modulation frequency or periodicity. A model of the formation of sequential associations between successive sounds is described, and the model is shown to be capable of emulating a wide range of psychophysical behaviour. The grouping of related spectral components and the development of pitch perception is also investigated. Finally a critical assessment of the work and ideas for future developments are presented. The principal contributions of this work are the further development of a model for pitch perception and the development of a novel architecture for the sequential association of those groups. In the process of developing these ideas, further insights into subcortical auditory processing were gained, and explanations for a number of puzzling psychophysical characteristics suggested.Royal Naval Engineering College, Manadon, Plymout

    A Comparative Study of Computational Models of Auditory Peripheral System

    Full text link
    A deep study about the computational models of the auditory peripheral system from three different research groups: Carney, Meddis and Hemmert, is presented here. The aim is to find out which model fits the data best and which properties of the models are relevant for speech recognition. To get a first approximation, different tests with tones have been performed with seven models. Then we have evaluated the results of these models in the presence of speech. Therefore, two models were studied deeply through an automatic speech recognition (ASR) system, in clean and noisy background and for a diversity of sound levels. The post stimulus time histogram help us to see how the models that improved the offset adaptation present the ¿dead time¿. For its part, the synchronization evaluation for tones and modulated signals, have highlighted the better result from the models with offset adaptation. Finally, tuning curves and Q10dB (added to ASR results) on contrary have indicated that the selectivity is not a property needed for speech recognition. Besides the evaluation of the models with ASR have demonstrated the outperforming of models with offset adaptation and the triviality of using cat or human tuning for speech recognition. With this results, we conclude that mostly the model that better fits the data is the one described by Zilany et al. (2009) and the property unquestionable for speech recognition would be a good offset adaptation that offers a better synchronization and a better ASR result. For ASR system it makes no big difference if offset adaptation comes from a shift of the auditory nerve response or from a power law adaptation in the synapse.Vendrell Llopis, N. (2010). A Comparative Study of Computational Models of Auditory Peripheral System. http://hdl.handle.net/10251/20433.Archivo delegad
    • …
    corecore