1,307 research outputs found

    Detecting and Estimating Signals in Noisy Cable Structures, I: Neuronal Noise Sources

    Get PDF
    In recent theoretical approaches addressing the problem of neural coding, tools from statistical estimation and information theory have been applied to quantify the ability of neurons to transmit information through their spike outputs. These techniques, though fairly general, ignore the specific nature of neuronal processing in terms of its known biophysical properties. However, a systematic study of processing at various stages in a biophysically faithful model of a single neuron can identify the role of each stage in information transfer. Toward this end, we carry out a theoretical analysis of the information loss of a synaptic signal propagating along a linear, one-dimensional, weakly active cable due to neuronal noise sources along the way, using both a signal reconstruction and a signal detection paradigm. Here we begin such an analysis by quantitatively characterizing three sources of membrane noise: (1) thermal noise due to the passive membrane resistance, (2) noise due to stochastic openings and closings of voltage-gated membrane channels (Na^+ and K^+), and (3) noise due to random, background synaptic activity. Using analytical expressions for the power spectral densities of these noise sources, we compare their magnitudes in the case of a patch of membrane from a cortical pyramidal cell and explore their dependence on different biophysical parameters

    In-phase and anti-phase synchronization in noisy Hodgkin-Huxley neurons

    Full text link
    We numerically investigate the influence of intrinsic channel noise on the dynamical response of delay-coupling in neuronal systems. The stochastic dynamics of the spiking is modeled within a stochastic modification of the standard Hodgkin-Huxley model wherein the delay-coupling accounts for the finite propagation time of an action potential along the neuronal axon. We quantify this delay-coupling of the Pyragas-type in terms of the difference between corresponding presynaptic and postsynaptic membrane potentials. For an elementary neuronal network consisting of two coupled neurons we detect characteristic stochastic synchronization patterns which exhibit multiple phase-flip bifurcations: The phase-flip bifurcations occur in form of alternate transitions from an in-phase spiking activity towards an anti-phase spiking activity. Interestingly, these phase-flips remain robust in strong channel noise and in turn cause a striking stabilization of the spiking frequency

    Stochastic Ion Channel Gating in Dendritic Neurons: Morphology Dependence and Probabilistic Synaptic Activation of Dendritic Spikes

    Get PDF
    Neuronal activity is mediated through changes in the probability of stochastic transitions between open and closed states of ion channels. While differences in morphology define neuronal cell types and may underlie neurological disorders, very little is known about influences of stochastic ion channel gating in neurons with complex morphology. We introduce and validate new computational tools that enable efficient generation and simulation of models containing stochastic ion channels distributed across dendritic and axonal membranes. Comparison of five morphologically distinct neuronal cell types reveals that when all simulated neurons contain identical densities of stochastic ion channels, the amplitude of stochastic membrane potential fluctuations differs between cell types and depends on sub-cellular location. For typical neurons, the amplitude of membrane potential fluctuations depends on channel kinetics as well as open probability. Using a detailed model of a hippocampal CA1 pyramidal neuron, we show that when intrinsic ion channels gate stochastically, the probability of initiation of dendritic or somatic spikes by dendritic synaptic input varies continuously between zero and one, whereas when ion channels gate deterministically, the probability is either zero or one. At physiological firing rates, stochastic gating of dendritic ion channels almost completely accounts for probabilistic somatic and dendritic spikes generated by the fully stochastic model. These results suggest that the consequences of stochastic ion channel gating differ globally between neuronal cell-types and locally between neuronal compartments. Whereas dendritic neurons are often assumed to behave deterministically, our simulations suggest that a direct consequence of stochastic gating of intrinsic ion channels is that spike output may instead be a probabilistic function of patterns of synaptic input to dendrites

    Subthreshold dynamics of the neural membrane potential driven by stochastic synaptic input

    Get PDF
    In the cerebral cortex, neurons are subject to a continuous bombardment of synaptic inputs originating from the network's background activity. This leads to ongoing, mostly subthreshold membrane dynamics that depends on the statistics of the background activity and of the synapses made on a neuron. Subthreshold membrane polarization is, in turn, a potent modulator of neural responses. The present paper analyzes the subthreshold dynamics of the neural membrane potential driven by synaptic inputs of stationary statistics. Synaptic inputs are considered in linear interaction. The analysis identifies regimes of input statistics which give rise to stationary, fluctuating, oscillatory, and unstable dynamics. In particular, I show that (i) mere noise inputs can drive the membrane potential into sustained, quasiperiodic oscillations (noise-driven oscillations), in the absence of a stimulus-derived, intraneural, or network pacemaker; (ii) adding hyperpolarizing to depolarizing synaptic input can increase neural activity (hyperpolarization-induced activity), in the absence of hyperpolarization-activated currents

    Spontaneous spiking in an autaptic Hodgkin-Huxley set up

    Full text link
    The effect of intrinsic channel noise is investigated for the dynamic response of a neuronal cell with a delayed feedback loop. The loop is based on the so-called autapse phenomenon in which dendrites establish not only connections to neighboring cells but as well to its own axon. The biophysical modeling is achieved in terms of a stochastic Hodgkin-Huxley model containing such a built in delayed feedback. The fluctuations stem from intrinsic channel noise, being caused by the stochastic nature of the gating dynamics of ion channels. The influence of the delayed stimulus is systematically analyzed with respect to the coupling parameter and the delay time in terms of the interspike interval histograms and the average interspike interval. The delayed feedback manifests itself in the occurrence of bursting and a rich multimodal interspike interval distribution, exhibiting a delay-induced reduction of the spontaneous spiking activity at characteristic frequencies. Moreover, a specific frequency-locking mechanism is detected for the mean interspike interval.Comment: 8 pages, 10 figure

    Computational convergence of the path integral for real dendritic morphologies

    Get PDF
    Neurons are characterised by a morphological structure unique amongst biological cells, the core of which is the dendritic tree. The vast number of dendritic geometries, combined with heterogeneous properties of the cell membrane, continue to challenge scientists in predicting neuronal input-output relationships, even in the case of sub-threshold dendritic currents. The Green’s function obtained for a given dendritic geometry provides this functional relationship for passive or quasi-active dendrites and can be constructed by a sum-over-trips approach based on a path integral formalism. In this paper, we introduce a number of efficient algorithms for realisation of the sum-over-trips framework and investigate the convergence of these algorithms on different dendritic geometries. We demonstrate that the convergence of the trip sampling methods strongly depends on dendritic morphology as well as the biophysical properties of the cell membrane. For real morphologies, the number of trips to guarantee a small convergence error might become very large and strongly affect computational efficiency. As an alternative, we introduce a highly-efficient matrix method which can be applied to arbitrary branching structures

    Stochastic Simulations on the Reliability of Action Potential Propagation in Thin Axons

    Get PDF
    It is generally assumed that axons use action potentials (APs) to transmit information fast and reliably to synapses. Yet, the reliability of transmission along fibers below 0.5 μm diameter, such as cortical and cerebellar axons, is unknown. Using detailed models of rodent cortical and squid axons and stochastic simulations, we show how conduction along such thin axons is affected by the probabilistic nature of voltage-gated ion channels (channel noise). We identify four distinct effects that corrupt propagating spike trains in thin axons: spikes were added, deleted, jittered, or split into groups depending upon the temporal pattern of spikes. Additional APs may appear spontaneously; however, APs in general seldom fail (<1%). Spike timing is jittered on the order of milliseconds over distances of millimeters, as conduction velocity fluctuates in two ways. First, variability in the number of Na channels opening in the early rising phase of the AP cause propagation speed to fluctuate gradually. Second, a novel mode of AP propagation (stochastic microsaltatory conduction), where the AP leaps ahead toward spontaneously formed clusters of open Na channels, produces random discrete jumps in spike time reliability. The combined effect of these two mechanisms depends on the pattern of spikes. Our results show that axonal variability is a general problem and should be taken into account when considering both neural coding and the reliability of synaptic transmission in densely connected cortical networks, where small synapses are typically innervated by thin axons. In contrast we find that thicker axons above 0.5 μm diameter are reliable

    Computational Properties of Cerebellar Nucleus Neurons: Effects of Stochastic Ion Channel Gating and Input Location

    Get PDF
    The function of the nervous system is shaped by the refined integration of synaptic inputs taking place at the single neuron level. Gain modulation is a computational principle that is widely used across the brain, in which the response of a neuronal unit to a set of inputs is affected in a multiplicative fashion by a second set of inputs, but without any effect on its selectivity. The arithmetic operations performed by pyramidal cells in cortical brain areas have been well characterised, along with the underlying mechanisms at the level of networks and cells, for instance background synaptic noise and dendritic saturation. However, in spite of the vast amount of research on the cerebellum and its function, little is known about neuronal computations carried out by its cellular components. A particular area of interest are the cerebellar nuclei, the main output gate of the cerebellum to the brain stem and cortical areas. The aim of this thesis is to contribute to an understanding of the arithmetic operations performed by neurons in the cerebellar nuclei. Focus is placed on two putative determinants, the location of the synaptic input and the presence of channel noise. To analyse the effect of channel noise, the known voltage-gated ion channels of a cerebellar nucleus neuron model are translated to stochastic Markov formalisms and their electrophysiologial behaviour is compared to their deterministic Hodgkin-Huxley counterparts. The findings demonstrate that in most cases, the behaviour of stochastic channels matches the reference deterministic models, with the notable exception of voltage-gated channels with fast kinetics. Two potential explanations are suggested for this discrepancy. Firstly, channels with fast kinetics are strongly affected by the artefactual loss of gating events in the simulation that is caused by the use of a finite-length time step. While this effect can be mitigated, in part, by using very small time steps, the second source of simulation artefacts is the rectification of the distribution of open channels, when channel kinetics characteristics allow the generation of a window current, with an temporal-averaged equilibrium close to zero. Further, stochastic gating is implemented in a realistic cerebellar nucleus neuronal model. The resulting stochastic model exhibits probabilistic spiking and a similar output rate as the corresponding deterministic cerebellar nucleus neuronal model. However, the outcomes of this thesis indicate the computational properties of the cerebellar nucleus neuronal model are independent of the presence of ion channel noise. The main result of this thesis is that the synaptic input location determines the single neuron computational properties, both in the cerebellar nucleus and layer Vb pyramidal neuronal models. The extent of multiplication increases systematically with the distance from the soma, for the cerebellar nucleus, but not for the layer Vb pyramidal neuron, where it is smaller than it would be expected for the distance from the soma. For both neurons, the underlying mechanism is related to the combined effect of nonlinearities introduced by dendritic saturation and the synaptic input noise. However, while excitatory inputs in the perisomatic areas in the cerebellar nucleus undergo additive operations and the distal areas multiplicative, in the layer Vb pyramidal neuron the integration of the excitatory driving input is always multiplicative. In addition, the change in gain is sensitive to the synchronicity of the excitatory synaptic input in the layer Vb pyramidal neuron, but not in the cerebellar nucleus neuron. These observations indicate that the same gain control mechanism might be utilized in distinct ways, in different computational contexts and across different areas, based on the neuronal type and its function
    corecore