317 research outputs found

    Deformable Simplicial Complexes

    Get PDF
    In this dissertation we present a novel method for deformable interface tracking in 2D and 3D|deformable simplicial complexes (DSC). Deformable interfaces are used in several applications, such as fluid simulation, image analysis, reconstruction or structural optimization. In the DSC method, the interface (curve in 2D; surface in 3D) is represented explicitly as a piecewise linear curve or surface. However, the domain is also subject to discretization: triangulation in 2D; tetrahedralization in 3D. This way, the interface can be alternatively represented as a set of edges/triangles separating triangles/tetrahedra marked as outside from those marked as inside. Such an approach allows for robust topological adaptivity. Among other advantages of the deformable simplicial complexes there are: space adaptivity, ability to handle and preserve sharp features, possibility for topology control. We demonstrate those strengths in several applications. In particular, a novel, DSC-based fluid dynamics solver has been developed during the PhD project. A special feature of this solver is that due to the fact that DSC maintains an explicit interface representation, surface tension is more easily dealt with. One particular advantage of DSC is the fact that as an alternative to topology adaptivity, topology control is also possible. This is exploited in the construction of cut loci on tori where a front expands from a single point on a torus and stops when it self-intersects

    Influence of Tissue Conductivity Inhomogeneity and Anisotropy on EEG/MEG based Source Localization in the Human Brain

    Get PDF
    The inverse problem in Electro- and Magneto-EncephaloGraphy (EEG/MEG) aims at reconstructing the underlying current distribution in the human brain using potential differences and/or magnetic fluxes that are measured non-invasively directly, or at a close distance, from the head surface. The solution requires repeated computation of the forward problem, i.e., the simulation of EEG and MEG fields for a given dipolar source in the brain using a volume-conduction model of the head. The associated differential equations are derived from the Maxwell equations. Not only do various head tissues exhibit different conductivities, some of them are also anisotropic conductors as, e.g., skull and brain white matter. To our knowledge, previous work has not extensively investigated the impact of modeling tissue anisotropy on source reconstruction. Currently, there are no readily available methods that allow direct conductivity measurements. Furthermore, there is still a lack of sufficiently powerful software packages that would yield significant reduction of the computation time involved in such complex models hence satisfying the time-restrictions for the solution of the inverse problem. In this dissertation, techniques of multimodal Magnetic Resonance Imaging (MRI) are presented in order to generate high-resolution realistically shaped anisotropic volume conductor models. One focus is the presentation of an improved segmentation of the skull by means of a bimodal T1/PD-MRI approach. The eigenvectors of the conductivity tensors in anisotropic white matter are determined using whole head Diffusion-Tensor-MRI. The Finite Element (FE) method in combination with a parallel algebraic multigrid solver yields a highly efficient solution of the forward problem. After giving an overview of state-of-the-art inverse methods, new regularization concepts are presented. Next, the sensitivity of inverse methods to tissue anisotropy is tested. The results show that skull anisotropy affects significantly EEG source reconstruction whereas white matter anisotropy affects both EEG and MEG source reconstructions. Therefore, high-resolution FE forward modeling is crucial for an accurate solution of the inverse problem in EEG and MEG.Motivation und Einordnung: Seit nun fast drei Jahrzehnten werden im Bereich der Kognitionswissenschaften und in klinischer Forschung und Routine die Quellen elektrischer Aktivitaet im menschlichen Gehirn anhand ihrer ueber das Elektroenzephalogramm (EEG) an der Kopfoberflaeche gemessenen Potentialverteilung bzw. ihres ueber das Magnetoenzephalogramm (MEG) in einigen Zentimetern Entfernung davon gemessenen magnetischen Flusses rekonstruiert. Im Vergleich zu anderen funktionellen Bildgebungsmethoden wie z.B. die Positronen-Emissions-Tomographie (PET) oder die funktionelle Magnetresonanztomographie (fMRT) hat die EEG/MEG-Quellrekonstruktion den Vorteil einer sehr hohen zeitlichen Aufloesung. Die gemessene Aktivitaet ist das Resultat von Ionenbewegungen in aktivierten kortikalen Regionen des Gehirns, den sog. Primaerstroemen. Schon im Jahr 1949 wurden erstmals die Primaerstroeme ueber Stromdipole mathematisch modelliert. Der Primaerstrom erzeugt R\'uckstr\'ome im leitf\'ahigen Gewebe des Kopfes, die sog. {\em Sekund\'arstr\'ome}. Die Rekonstruktion der Dipolquellen wird das {\em EEG/MEG inverse Problem} genannt. Dessen L\'osung erfordert die wiederholte Berechnung des {\em Vorw\'arts\-problems}, d.h. der Simulation der EEG/MEG-Feldverteilung f\'ur eine gegebene Dipolquelle im Gehirn. Ein erstes Anwendungsgebiet f\/indet sich in der Diagnose und Therapie von pharma-resistenten Epilepsien, von denen ca. 0,25\% der Weltbev\'olkerung betroffen sind und f\'ur die sich in den letzten Jahrzehnten eine systematische chirurgische Behandlung ent\-wickelt hat. Voraussetzung f\'ur einen die restlichen Gehirnregionen schonenden chirurgischen Eingrif\/f ist die Kenntnis der Lage und Ausdehnung der epileptischen Zentren. Bisher wurden diese Charakteristika in den Patienten stark belastenden invasiven Untersuchungen wie zum Beispiel Subdural- oder Tiefen-Elektroden gewonnen. Die bioelektrischen Signale von Epilepsiekranken weisen zwischen den Anfallsereignissen sog. interiktale Spikes auf. Die nicht-invasive Messung des EEG/MEG dieser interiktalen Spikes und die anschlie{\ss}ende Berechnung des epileptischen Zentrums belastet den Patienten nicht. Ein weiteres Anwendungsfeld ist die pr\'aoperative Ermittlung der Lage wichtiger funk\-tio\-nell-zu\-sam\-men\-h\'angender Zentren im Gehirn, z.B.~des prim\'ar-mo\-to\-ri\-schen, des prim\'ar-au\-di\-to\-rischen oder prim\'ar-somatosensorischen Cortex. Bei Operationen in diesen Bereichen (z.B.~Tumoroperationen) k\'onnten L\'ahmungen, H\'or- und Sensibilit\'atsst\'orungen vermieden werden. Dazu werden \'uber akustische oder sensorische Reize charakteristische Signale evoziert und \'uber Summationstechniken sichtbar gemacht. Durch das L\'osen des inversen Problems wird versucht, die zugrunde liegende Quellstruktur zu ermitteln. Neben den aufgef\'uhrten klinischen Anwendungen ergeben sich auch zahlreiche Anwendungsfelder in der Kognitionswissenschaft. Von Interesse sind z.B.~funktionelle Zusammenh\'ange im Gehirn und die Aufdeckung der aktivierten Areale w\'ahrend der Verarbeitung eines Reizes, wie z.B. der Sprachverarbeitung im Gehirn. Die L\'osung des Vorw\'artsproblems impliziert die Mo\-del\-lierung des Kopfes als Volumenleiter. Es ist bekannt, dass in makroskopischer Hinsicht Gewebe wie die Kopfhaut, der Sch\'adel, die Zerebrospinalfl\'ussigkeit (engl.: CSF) und die Hirngewebe graue und wei{\ss}e Substanz (engl.: GM und WM) verschiedene Leitf\'ahigkeiten besitzen. Der menschliche Sch\'adel ist aus drei Schichten aufgebaut, eine relativ gut leitf\'ahige spongi\'ose Schicht wird von zwei stark isolierenden Schichten, den \'au{\ss}eren und inneren Kompakta, eingeschlossen. In radialer Richtung durch den Sch\'adel handelt es sich also um eine Reihenschaltung von hohem, niedrigem und hohem Widerstand, wohingegen in den tangentialen Richtungen die Leiter parallel geschaltet sind. Als Ganzes gesehen besitzt der Sch\'adel demnach eine richtungsabh\'angige oder {\em anisotrope} Leitf\'ahigkeit mit einem gemessenen Verh\'altnis von bis zu 1 zu 10. F\'ur die faserige WM wurde ebenfalls eine Anisotropie mit einem \'ahnlichen Verh\'altnis (senkrecht zu parallel zu den Fasern) nachgewiesen. Leider existiert bis heute keine direkte Methode, die Leitf\'ahigkeit der WM nicht-invasiv in gen\'ugender Aufl\'osung zu ermittelt. Seit einigen Jahren werden aller\-dings Formalismen diskutiert, die den gesuchten Leitf\'ahigkeitstensor in Bezug setzen zum Wasserdiffusionstensor, der in WM nicht-invasiv \'uber die Diffusionstensor-MRT (DT-MRT) gemessen werden kann. Nat\'urlich wird keine fundamentale Beziehung zwischen der freien Beweglichkeit von Ionen und Wasserteilchen angenommen, sondern lediglich, dass die eingeschr\'ankte Mobilit\'at \'uber die Fasergeometrie der WM in Beziehung steht. Heutzutage werden verschiedene Ans\'atze f\'ur die L\'osung des Vor\-w\'arts\-pro\-blems genutzt und mit steigender Genauigkeit der Modellierung des Kopfvolumenleiters erh\'oht sich die Komplexit\'at der numerischen Feldberechnungen. Einfache Modelle, die immer noch am h\'aufigsten Gebrauchten, beschreiben den Kopf als Mehrschalenkugel-Leiter mit \'ublicherweise drei Schichten, die die Kopfhaut, den Sch\'adel und das Gehirn repr\'asentieren. Um besser auf die Geometrie der drei modellierten Oberfl\'achen einzugehen, wurden sog. BE-Modelle (von engl.: Boundary Element) entwickelt, die sich f\'ur isotrop leitf\'ahige Schichten eignen. Um sowohl auf realistische Geometrien als auch auf Anisotropien und Inhomogenit\'aten eingehen zu k\'onnen, wurden Finite-Elemente (FE) Modelle des Kopfes ent\-wi\-ckelt. Zwei wichtige Fragen stellen sich nun: Ist eine exakte Modellierung der vorgestellten Gewebeleitf\'ahigkeits-Anisotropien n\'otig und in welchen F\'allen reichen weniger berechnungsaufwendige Verfahren aus? Wie k\'onnen komplexe FE-Vorw\'artsmodelle hinreichend beschleunigt werden, um den Zeitrestriktionen f\'ur inverse Quellrekonstruktionen in den Anwendungen zu gen\'ugen? Es existieren zahlreiche Arbeiten, die, basierend auf FE-Modellen des Kopfes, gezeigt haben, dass \'Offnungen im Sch\'adel wie z.B. diejenige, durch die der optische Nerv eintritt oder das okzipitale Loch des Hirnstamms, oder Inhomogenit\'aten wie L\'asionen im Gehirn oder die Sutura des Sch\'adels (insbesondere bei Kleinkindern, wo die Sutura noch nicht geschlossen sind) einen nicht vernachl\'assigbaren Einfluss auf das EEG/MEG-Vorw\'arts\-problem haben. Eine erste Studie bzgl. der Sensitivit\'at zweier ausgew\'ahlter EEG-Rekonstruktionsverfahren wies teils gro{\ss}e Fehler im Falle der Nichtbeachtung von Sch\'adel-Anisotropie nach. Insbesondere f\'ur diverse klinische Anwendungen wird der sog. {\em single dipole fit} im kontinuierlichen Parameterraum verwendet. Aufgrund des hohen Berechnungsaufwands wurden solche Verfahren bisher noch nicht auf ihre Sensitivit\'at auf Sch\'adel\-anisotropie getestet. Obwohl bereits eine Studie einen nicht-vernachl\'assigbaren Einfluss auf die EEG/MEG-Vorw\'artssimulation zeigte, gibt es noch keinerlei Ergebnis zur Aus\-wir\-kung der WM-Anisotropie auf inverse Rekonstruktionsverfahren. Die L\'osung des inversen Problems ist im allgemeinen nicht eindeutig. Viele Dipol-Quell\-konfi\-gura\-tionen k\'onnen ein und dieselbe EEG und MEG Feldverteilung erzeugen. Zus\'atz\-liche Annahmen \'uber die Quellen sind dementsprechend unerl\'asslich. Bei den sog. {\em fokalen Rekonstruktionsmethoden} wird die Annahme gemacht, dass einige wenige Dipole den gemessenen Daten zugrunde liegen. Diese Dipole (Anzahl, Ort, Richtung, St\'arke) sollen innerhalb des anatomisch und physiologisch sinnvollen Suchgebiets so ermittelt werden, dass die Messwerte m\'oglichst genau erkl\'art werden, gleichzeitig aber das Rauschen keinen zu starken Einfluss auf die L\'osung nimmt und die Algorithmen stabil in Bezug auf eine \'Ubersch\'atzung der Anzahl aktiver Quellen bleiben. Bei diesen, wie auch bei den sog. {\em Stromdichterekonstruktionsverfahren}, wird sich das Konzept der Regularisierung als eine wichtige Methode herausstellen. Wissenschaftliche Ergebnisse der Dissertation: Die Ergebnisse der vorgelegten Dissertation k\'onnen in vier Teilbereiche aufgeteilt werden. Im ersten Teilbereich wurden Methoden zur Registrierung und Segmentierung multimodaler MR-Bilder vorgestellt mit dem Ziel, ein {\bf realistisches anisotropes Multigewebe Kopfmodell} zu generieren. In der Literatur wurde von gr\'o{\ss}eren EEG- und MEG-Quell\-rekonstruktions\-fehlern aufgrund mangelhafter Modellierung insbesondere der inneren Sch\'a\-del\-kante berichtet. Ein erster Fokus dieser Arbeit lag dementsprechend auf einer verbesserten Segmentierung dieser Kante, die \'uber ein auf dem T1-gewichteten MRT (T1-MRT) registrierten Protonendichte-ge\-wich\-teten MRT (PD-MRT) gewonnen wurde. Die innere Sch\'a\-del\-kante zeichnet sich im PD-MRT im Gegensatz zum T1-MRT durch einen hohen Kontrast zwischen CSF (protonenreich) und Knochen (protonenarm) aus. Das T1-MRT wurde hingegen f\'ur die Segmentierung der Kopfhaut, der GM und der WM verwendet. Die Standardtechnik im Bereich der EEG/MEG-Quellrekonstruktion nutzt lediglich ein T1-MRT und gewinnt die gesuchte innere Sch\'adelkante \'uber ein Gl\'atten und Aufblasen der segmentierten Hirnoberfl\'ache. Im Vergleich beider Methoden konnte eine Verbesserung der Segmentierung von bis zu 8,5mm in Gebieten erzielt werden, in denen die Standardmethode die Dicke der CSF-Schicht untersch\'atzte. \'Uber die vorgestellten Methoden, insbesondere der Segmentierung unter Ber\'ucksichtigung der MR-Inhomogenit\'aten, konnte zudem eine sehr exakte Modellierung der GM erzielt werden, welche dann als anatomische und auch physiologische Nebenbedingung in die Quellrekonstruktion eingebettet werden kann. Zur realistischen Modellierung der An\-iso\-tropie der Sch\'adelschicht wurde ein deformierbares Modell eingesetzt, welches eine gegl\'attete Spongiosaoberfl\'ache darstellt und somit ein Abgreifen der Leitf\'ahigkeitstensor-Eigenvektoren in radialer Knochenrichtung erm\'oglicht. Die Eigenvektoren der WM-Tensoren wurden \'uber Ganzkopf-DT-MRT gemessen. Sch\'adel- und WM-Tensor-Eigen\-werte wurden entweder unter Ausnutzung publizierter Werte simuliert oder gem\'a{\ss} einem differentialen EMA (von engl.: Effective Medium Approach) ermittelt. Der zweite Teilbereich betraf die {\bf schnelle hochaufgel\'oste FE-Modellierung} des EEG/ MEG-Vorw\'artsproblems. Zun\'achst wurde ein \'Uberblick \'uber die Theorie gegeben und die praktische Realisierung der sp\'ater eingesetzten hochaufgel\'osten anisotropen FE-Volumen\-leiter\-modelle vorgestellt. In numerischen Genauigkeitsstudien konnte nachgewiesen werden, dass Hexaeder-FE-Netze, welche ein Verschieben der St\'utzpunkte zur Gl\'attung an Gewebekanten nutzen, vorteilhaft sind zu herk\'ommlichen Hexaeder-Netzen. Dazu wurden die Reihenentwicklungsformeln f\'ur das Mehrschalenkugel-Modell eingesetzt. Ein wei\-terer Fokus dieser Arbeit lag auf dem Einsatz schneller FE-L\'osungsmethoden, welche die praktische Anwendbarkeit von hochaufgel\'osten anisotropen FE-Kopfmodellen in den verschiedenen Anwendungsgebieten erm\'oglichen sollte. In einem Zeitvergleich zwischen dem neu in die Software integrierten parallelen (12 Prozessoren) algebraischen Mehrgitter- und dem Standard-Einprozessor-Jacobi-Vor\-kon\-di\-tio\-nierer f\'ur das Verfahren der konjugierten Gradienten konnte f\'ur hochaufgel\'oste anisotrope FE-Kopfmodelle ein Beschleunigungsfaktor von mehr als 100 erzielt werden. Im dritten Teilbereich, den {\bf Methoden zum inversen Problem}, wurden neben einem \'Uber\-blick \'uber fokale Rekonstruktions\-verfahren und Stromdichte\-rekon\-struk\-tions\-verfahren algorithmische Neuentwicklungen pr\'asentiert. Es wurde zun\'achst die Methode des {\em single dipole fit} in die FE-Modellierung eingef\'uhrt. F\'ur multiple dipolare Quellen wurde ein {\em Si\-mu\-lated Annealing} Algorithmus in Kombination mit einer abgeschnittenen Singul\'arwertzerlegung im diskreten Parameterraum entwickelt. Im Vergleich zu Standardmethoden zeigte der Algorithmus in verschiedenen Si\-mu\-lations\-studien eine ver\-bes\-serte F\'ahigkeit der Unterscheidung zwischen realen und sog. {\em ghost} Quellen. Des Weiteren wurde eine k\'urzlich in der Literatur vorgestellte raum-zeitliche Regularisierungsme\-thode auf die Stromdichterekonstruktion und, als zweite Anwendung, auf die dynamische Impedanztomographie angewandt. Der raum-zeitliche Ansatz konnte dabei eine stabilisierende Wirkung auf die Rekonstruktionsergebnisse erzielen und zeigte im Hinblick auf seine Genauigkeit und den Speicher- und Rechenzeitbedarf Vorteile gegen\'uber einem sog. {\em Kal\-man-Gl\'atter}. Im letzten Teilbereich der Dissertation wurden Untersuchungen zur {\bf An\-iso\-tro\-pie-Sensi\-tivi\-t\'at} durchgef\'uhrt. Der erste Teil bezog sich dabei auf das Vorw\'arts\-problem, wo die Resultate im Einklang mit der verf\'ugbaren Literatur waren. Es kann festgehalten werden, dass Sch\'adelanisotropie einen nicht-vernachl\'assigbaren Einfluss auf die EEG-Simulation hatte, wohingegen das MEG unbeeinflusst blieb. Je mehr eine Quelle von WM umgeben war, desto gr\'o{\ss}er war der Einfluss der WM-Anisotropie auf sowohl EEG als auch MEG. F\'ur das MEG wirkte sich WM-Anisotropie insbesondere auf Quellen mit starken radialen Anteilen aus. Lokale Leitf\'ahigkeits\'anderungen im Bereich der Quelle sollten sowohl im Hinblick auf das EEG als auch auf das MEG modelliert werden. Im zweiten Teil wurden die Einfl\'usse auf die inverse Quellrekonstruktion untersucht. Mit 18mm maximalem Fehler des EEG basierten {\em single dipole fit} war die Lokalisation einer haupts\'achlich tangential orientierten oberfl\'achennahen Quelle besonders sensitiv gegen\'uber einer 1 zu 10 Sch\'adelanisotropie. Da die tangentialen Quellen im temporalen Bereich (Sch\'adel re\-la\-tiv d\'unn) zu tief und im parietalen und okzipitalen Bereich (Sch\'adel relativ dick) zu oberfl\'achennah lokalisiert wurden, scheint eine Approximation der Sch\'adelanisotropie in BE-Modellen \'uber eine Anpassung des skalaren Sch\'adelleitf\'ahigkeitswertes nicht m\'oglich zu sein. Obwohl bei Vernachl\'assigung der WM-Anisotropie der maximale EEG-Lokalisierungsfehler mit 6,2mm f\'ur eine tiefe Quelle wesentlich geringer ausfiel, kann aufgrund eines maximalen Orientierungsfehlers von 24∘^{\circ} und einer mehr als zweifach untersch\'atzten Quellst\'arke eine Missinterpretation des Ergebnisses nicht ausgeschlossen werden. F\'ur die Rekonstruktion der vier tangentialen oberfl\'achennahen Dipole, welche als Aktivit\'atszentren der sog. {\em Early Left Anterior Negativity} (ELAN) Komponente bei der Syntaxanalyse von Sprache betrachtet werden, stellte sich WM und Sch\'adel\-anisotropie als vernachl\'assigbar im Hinblick auf eine MEG-Rekonstruk\-tion heraus. Im Gegensatz dazu wurde das EEG-Rekonstruktionsergebnis f\'ur alle getesteten inversen Verfahren stark verf\'alscht. Anisotropie verschob das Aktivit\'ats\-zentrum von L1L_1 und L2L_2 Norm Stromdichterekonstruktionsverfahren entlang der Sylvischen Furche in anteriore Richtung

    Digital Processing and Management Tools for 2D and 3D Shape Repositories

    No full text

    Processing mesh animations: from static to dynamic geometry and back

    Get PDF
    Static triangle meshes are the representation of choice for artificial objects, as well as for digital replicas of real objects. They have proven themselves to be a solid foundation for further processing. Although triangle meshes are handy in general, it may seem that their discrete approximation of reality is a downside. But in fact, the opposite is true. The approximation of the real object's shape remains the same, even if we willfully change the vertex positions in the mesh, which allows us to optimize it in this way. Due to modern acquisition methods, such a step is always beneficial, often even required, prior to further processing of the acquired triangle mesh. Therefore, we present a general framework for optimizing surface meshes with respect to various target criteria. Because of the simplicity and efficiency of the setup it can be adapted to a variety of applications. Although this framework was initially designed for single static meshes, the application to a set of meshes is straightforward. For example, we convert a set of meshes into compatible ones and use them as basis for creating dynamic geometry. Consequently, we propose an interpolation method which is able to produce visually plausible interpolation results, even if the compatible input meshes differ by large rotations. The method can be applied to any number of input vertex configurations and due to the utilization of a hierarchical scheme, the approach is fast and can be used for very large meshes. Furthermore, we consider the opposite direction. Given an animation sequence, we propose a pre-processing algorithm that considerably reduces the number of meshes required to describe the sequence, thus yielding a compact representation. Our method is based on a clustering and classification approach, which can be utilized to automatically find the most prominent meshes of the sequence. The original meshes can then be expressed as linear combinations of these few representative meshes with only small approximation errors. Finally, we investigate the shape space spanned by those few meshes and show how to apply different interpolation schemes to create other shape spaces, which are not based on vertex coordinates. We conclude with a careful analysis of these shape spaces and their usability for a compact representation of an animation sequence

    Statistical Analysis of Spherical Harmonics Representations of Soil Particles

    Get PDF
    RÉSUMÉ :GrĂące aux avancĂ©es en micro-tomographie par rayons-X, il est dĂ©sormais possible d’obtenir des reprĂ©sentations en 3D haute rĂ©solution de milliers de particules Ă©chantillonnĂ©es depuis diverses sources gĂ©ologiques. La reprĂ©sentation plus prĂ©cise des particules pourrait Ă©ventuellement permettre d’obtenir des simulations numĂ©riques plus fidĂšles des comportements de matĂ©riaux granulaires par la mĂ©thode des Ă©lĂ©ments discrets (DEM, Discrete Element Method en anglais). Cependant, l’accĂšs Ă  des descriptions fines demande aussi de dĂ©velopper de nouveaux outils numĂ©riques pour la caractĂ©risation gĂ©omĂ©trique et l’analyse statistique d’ensembles de particules. Ce mĂ©moire se concentre sur la modĂ©lisation gĂ©omĂ©trique des particules de sol par la reprĂ©sentation de leur surface Ă  l’aide de la dĂ©composition en harmoniques sphĂ©riques. Plus prĂ©cisĂ©ment, nous discutons de l’utilisation des reprĂ©sentations en harmoniques sphĂ©riques pour dĂ©velopper un modĂšle statistique permettant de gĂ©nĂ©rer des assemblages virtuels de particules Ă  partir des donnĂ©es de plusieurs centaines de grains. La haute dimension de tels ensembles de donnĂ©es a longtemps Ă©tĂ© une complication majeure, mais avec les rĂ©centes avancĂ©es en apprentissage automatique dans l’analyse des mĂ©gadonnĂ©es, il y a espoir que ces nouveaux algorithmes puissent surmonter cette limitation.----------ABSTRACT : Advancements in X-ray micro-computed tomography allow one to obtain high resolution 3D representations of particles collected from multiple geological sources. The representational power enabled by this new technology could allow for more accurate numerical simulations of granular materials using the celebrated Discrete Element Method (DEM). However, access to realistic representations of particles requires the development of more advanced geometrical and statistical characterization techniques. This thesis focuses on the use of the Spherical Harmonics decomposition of soil particles to model the surface of the particles. More precisely, we discuss the application of the Spherical Harmonics decomposition of particles to develop generative models of virtual assemblies that are calibrated based on datasets made of hundreds of grains. For long, the high dimensionality of the data has been a major challenge to the developpement of such statistical models. However, with recent advances of machine learning algorithms in the context of Big Data, there is hope that these new techniques can be utilized to overcome this limitation and obtain very accurate generative models of assemblies

    Courbure discrÚte : théorie et applications

    Get PDF
    International audienceThe present volume contains the proceedings of the 2013 Meeting on discrete curvature, held at CIRM, Luminy, France. The aim of this meeting was to bring together researchers from various backgrounds, ranging from mathematics to computer science, with a focus on both theory and applications. With 27 invited talks and 8 posters, the conference attracted 70 researchers from all over the world. The challenge of finding a common ground on the topic of discrete curvature was met with success, and these proceedings are a testimony of this wor

    Surface Reconstruction From 3D Point Clouds

    Get PDF
    The triangulation of a point cloud of a 3D object is a complex problem, since it depends on the complexity of the shape of such object, as well as on the density of points generated by a specific scanner. In the literature, there are essentially two approaches to the reconstruction of surfaces from point clouds: interpolation and approximation. In general, interpolation approaches are associated with simplicial methods; that is, methods that directly generate a triangle mesh from a point cloud. On the other hand, approximation approaches generate a global implicit function — that represents an implicit surface — from local shape functions, then generating a triangulation of such implicit surface. The simplicial methods are divided into two families: Delaunay and mesh growing. Bearing in mind that the first of the methods presented in this dissertation falls under the category of mesh growing methods, let us focus our attention for now on these methods. One of the biggest problems with these methods is that, in general, they are based on the establishment of dihedral angle bounds between adjacent triangles, as needed to make the decision on which triangle to add to the expansion mesh front. Typically, other bounds are also used for the internal angles of each triangle. In the course of this dissertation, we will see how this problem was solved. The second algorithm introduced in this dissertation is also a simplicial method but does not fit into any of the two families mentioned above, which makes us think that we are in the presence of a new family: triangulation based on the atlas of charts or triangle stars. This algorithm generates an atlas of the surface that consists of overlapping stars of triangles, that is, one produces a total surface coverage, thus solving one of the common problems of this family of direct triangulation methods, which is the appearance of holes or incomplete triangulation of the surface. The third algorithm refers to an implicit method, but, unlike other implicit methods, it uses an interpolation approach. That is, the local shape functions interpolate the points of the cloud. It is, perhaps, one of a few implicit methods that we can find in the literature that interpolates all points of the cloud. Therefore, one of the biggest problems of the implicit methods is solved, which has to do with the smoothing of the surface sharp features resulting from the blending of the local functions into the global function. What is common to the three methods is the interpolation approach, either in simple or implicit methods, that is, the linearization of the surface subject to reconstruction. As will be seen, the linearization of the neighborhood of each point allows us to solve several problems posed to the surface reconstruction algorithms, namely: point sub‐sampling, non‐uniform sampling, as well as sharp features.A triangulação de uma nuvem de pontos de um objeto 3D Ă© um problema complexo, uma vez que depende da complexidade da forma desse objeto, assim como da densidade dos pontos extraĂ­dos desse objeto atravĂ©s de um scanner 3D particular. Na literatura, existem essencialmente duas abordagens na reconstrução de superfĂ­cies a partir de nuvens de pontos: interpolação e aproximação. Em geral, as abordagens de interpolação estĂŁo associadas aos mĂ©todos simpliciais, ou seja, a mĂ©todos que geram diretamente uma malha de triĂąngulos a partir de uma nuvem de pontos. Por outro lado, as abordagens de aproximação estĂŁo habitualmente associadas Ă  geração de uma função implĂ­cita global —que representa uma superfĂ­cie implĂ­cita— a partir de funçÔes locais de forma, para em seguida gerar uma triangulação da dita superfĂ­cie implĂ­cita. Os mĂ©todos simpliciais dividem‐se em duas famĂ­lias: triangulação de Delaunay e triangulação baseada em crescimento progressivo da triangulação (i.e., mesh growing). Tendo em conta que o primeiro dos mĂ©todos apresentados nesta dissertação se enquadra na categoria de mĂ©todos de crescimento progressivo, foquemos a nossa atenção por ora nestes mĂ©todos. Um dos maiores problemas destes mĂ©todos Ă© que, em geral, se baseiam no estabelecimento de limites de Ăąngulos diĂ©dricos (i.e., dihedral angle bounds) entre triĂąngulos adjacentes, para assim tomar a decisĂŁo sobre qual triĂąngulo acrescentar Ă  frente de expansĂŁo da malha. Tipicamente, tambĂ©m se usam limites para os Ăąngulos internos de cada triĂąngulo. No decorrer desta dissertação veremos como Ă© que este problema foi resolvido. O segundo algoritmo introduzido nesta dissertação tambĂ©m Ă© um mĂ©todo simplicial, mas nĂŁo se enquadra em nenhuma das duas famĂ­lias acima referidas, o que nos faz pensar que estaremos na presença de uma nova famĂ­lia: triangulação baseada em atlas de vizinhanças sobrepostas (i.e., atlas of charts) ou estrelas de triĂąngulos (i.e., triangle star). Este algoritmo gera um atlas da superfĂ­cie que Ă© constituĂ­do por estrelas sobrepostas de triĂąngulos, ou seja, produz‐se a cobertura total da superfĂ­cie, resolvendo assim um dos problemas comuns desta famĂ­lia de mĂ©todos de triangulação direta que Ă© o do surgimento de furos ou de triangulação incompleta da superfĂ­cie. O terceiro algoritmo refere‐se a um mĂ©todo implĂ­cito, mas, ao invĂ©s de grande parte dos mĂ©todos implĂ­citos, utiliza uma abordagem de interpolação. Ou seja, as funçÔes locais de forma interpolam os pontos da nuvem. É, talvez, um dos poucos mĂ©todos implĂ­citos que podemos encontrar na literatura que interpola todos os pontos da nuvem. Desta forma resolve‐se um dos maiores problemas dos mĂ©todos implĂ­citos que Ă© o do arredondamento de forma resultante do blending das funçÔes locais que geram a função global, em particular ao longo dos vincos da superfĂ­cie (i.e., sharp features). O que Ă© comum aos trĂȘs mĂ©todos Ă© a abordagem de interpolação, quer em mĂ©todos simpliciais quer em mĂ©todos implĂ­citos, ou seja a linearização da superfĂ­cie sujeita a reconstrução. Como se verĂĄ, a linearização da vizinhança de cada ponto permite‐nos resolver vĂĄrios problemas colocados aos algoritmos de reconstrução de superfĂ­cies, nomeadamente: sub‐amostragem de pontos (point sub‐sampling), amostragem nĂŁo uniforme (non‐uniform sampling), bem como formas vincadas (sharp features)

    MĂ©tamorphose de maillage 3D

    Get PDF
    Cette thĂšse de doctorat aborde spĂ©cifiquement le problĂšme de la mĂ©tamorphose entre diffĂ©rents maillages 3D, qui peut assurer un niveau Ă©levĂ© de qualitĂ© pour la sĂ©quence de transition, qui devrait ĂȘtre aussi lisse et progressive que possible, cohĂ©rente par rapport Ă  la gĂ©omĂ©trie et la topologie, et visuellement agrĂ©able. Les diffĂ©rentes Ă©tapes impliquĂ©es dans le processus de transformation sont dĂ©veloppĂ©es dans cette thĂšse. Nos premiĂšres contributions concernent deux approches diffĂ©rentes des paramĂ©trisations: un algorithme de mappage barycentrique basĂ© sur la prĂ©servation des rapports de longueur et une technique de paramĂ©trisation sphĂ©rique, exploitant la courbure Gaussien. L'Ă©valuation expĂ©rimentale, effectuĂ©es sur des modĂšles 3D de formes variĂ©es, dĂ©montrĂ© une amĂ©lioration considĂ©rable en termes de distorsion maillage pour les deux mĂ©thodes. Afin d aligner les caractĂ©ristiques des deux modĂšles d'entrĂ©e, nous avons considĂ©rĂ© une technique de dĂ©formation basĂ©e sur la fonction radial CTPS C2a appropriĂ© pour dĂ©former le mappage dans le domaine paramĂ©trique et maintenir un mappage valide a travers le processus de mouvement. La derniĂšre contribution consiste d une une nouvelle mĂ©thode qui construit un pseudo metamaillage qui Ă©vite l'exĂ©cution et le suivi des intersections d arĂȘtes comme rencontrĂ©es dans l'Ă©tat-of-the-art. En outre, notre mĂ©thode permet de rĂ©duire de maniĂšre drastique le nombre de sommets normalement nĂ©cessaires dans une structure supermesh. Le cadre gĂ©nĂ©rale de mĂ©tamorphose a Ă©tĂ© intĂ©grĂ© dans une application prototype de morphing qui permet Ă  l'utilisateur d'opĂ©rer de façon interactive avec des modĂšles 3D et de contrĂŽler chaque Ă©tape du processusThis Ph.D. thesis specifically deals with the issue of metamorphosis of 3D objects represented as 3D triangular meshes. The objective is to elaborate a complete 3D mesh morphing methodology which ensures high quality transition sequences, smooth and gradual, consistent with respect to both geometry and topology, and visually pleasant. Our first contributions concern the two different approaches of parameterization: a new barycentric mapping algorithm based on the preservation of the mesh length ratios, and a spherical parameterization technique, exploiting a Gaussian curvature criterion. The experimental evaluation, carried out on 3D models of various shapes, demonstrated a considerably improvement in terms of mesh distortion for both methods. In order to align the features of the two input models, we have considered a warping technique based on the CTPS C2a radial basis function suitable to deform the models embeddings in the parametric domain maintaining a valid mapping through the entire movement process. We show how this technique has to be adapted in order to warp meshes specified in the parametric domains. A final contribution consists of a novel algorithm for constructing a pseudo-metamesh that avoids the complex process of edge intersections encountered in the state-of-the-art. The obtained mesh structure is characterized by a small number of vertices and it is able to approximate both the source and target shapes. The entire mesh morphing framework has been integrated in an interactive application that allows the user to control and visualize all the stages of the morphing processEVRY-INT (912282302) / SudocSudocFranceF
    • 

    corecore