576 research outputs found

    Exploring relationship between perceived motivation factors and job satisfaction

    Get PDF
    A number of studies that have focused on perceived motivation factors towards employees’ job satisfaction have been conducted. However, very few relate these concepts from knowledge workers’ perspective. This paper set out to have an empirical look at the relationship between motivation factors and employees’ job satisfaction. The survey had been conducted by distributing questionnaires to employees describes as “knowledge workers” by the manager. 50 respondents participated in this study to yield a response rate of 84.75%. The results showed that only two out three motivator factors (recognition and achievement) have significant relationship between with intrinsic satisfaction and only two out of three hygiene factor (security and working condition) have significant relationship with extrinsic job satisfaction. Thus, this signifies the importance of both motivator and hygiene factors in enhancing job satisfaction among employees especially among knowledge worker

    HERMIES-3: A step toward autonomous mobility, manipulation, and perception

    Get PDF
    HERMIES-III is an autonomous robot comprised of a seven degree-of-freedom (DOF) manipulator designed for human scale tasks, a laser range finder, a sonar array, an omni-directional wheel-driven chassis, multiple cameras, and a dual computer system containing a 16-node hypercube expandable to 128 nodes. The current experimental program involves performance of human-scale tasks (e.g., valve manipulation, use of tools), integration of a dexterous manipulator and platform motion in geometrically complex environments, and effective use of multiple cooperating robots (HERMIES-IIB and HERMIES-III). The environment in which the robots operate has been designed to include multiple valves, pipes, meters, obstacles on the floor, valves occluded from view, and multiple paths of differing navigation complexity. The ongoing research program supports the development of autonomous capability for HERMIES-IIB and III to perform complex navigation and manipulation under time constraints, while dealing with imprecise sensory information

    Robotic Search and Rescue through In-Pipe Movement

    Get PDF
    So far, we have been engaged in the research and development of various kinds of robots that could be applied to in-pipe inspections that existing methods (screw-drive type, parallel multi-modular type, and articulated wheeled type) cannot perform. In this chapter, we categorized each in-pipe inspection robot depending on its configuration and structure, which includes the design of the propulsive mechanism, steering mechanism, stretching mechanism, and the locations of the wheel and joint axes. On the basis of this classification and from a developer’s point of view, we also discussed the various kinds of robots that we have developed, along with their advantages and disadvantages

    Human-powered vehicle capable of movement in the longitudinal and lateral directions

    Get PDF
    Human-powered vehicles, especially conventional wheelchairs, are essential tools for people with lower body disability. But their movement in a lateral direction is limited or impossible, which burdens users who want to change directions, especially in a narrow space. Thus, a human-powered vehicle that can move in a lateral direction is required. To move in any direction, many motor-driven omnidirectional vehicles have been proposed, but humans cannot manually power their mechanisms. To solve this problem, we are developing a human-powered vehicle, that is, driven by hands of the rider, that can move in both the longitudinal and lateral directions. This paper proposes such a vehicle, which has a mechanism to move in the lateral direction like people can do while walking. We designed it so that riders can operate its mechanism by analyzing the space reachable by the rider’s palms where they can effectively exert power. We constructed a prototype and conducted experiments to confirm that the vehicle moves as expected with relatively low effort. In the experiments, we confirmed the validity of vehicle operation by comparing the moving time of the vehicle with and without the lateral translation function for different travel distances and passage widths. Our results showed that the proposed vehicle moves more quickly or requires shorter moving distance in comparison with a conventional wheelchair because of the lateral movement function. In addition, we found that the threshold for utility of the function is whether the passage width is larger than the vehicle diagonal length

    Unlimited-wokspace teleoperation

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2012Includes bibliographical references (leaves: 100-105)Text in English; Abstract: Turkish and Englishxiv, 109 leavesTeleoperation is, in its brief description, operating a vehicle or a manipulator from a distance. Teleoperation is used to reduce mission cost, protect humans from accidents that can be occurred during the mission, and perform complex missions for tasks that take place in areas which are difficult to reach or dangerous for humans. Teleoperation is divided into two main categories as unilateral and bilateral teleoperation according to information flow. This flow can be configured to be in either one direction (only from master to slave) or two directions (from master to slave and from slave to master). In unlimited-workspace teleoperation, one of the types of bilateral teleoperation, mobile robots are controlled by the operator and environmental information is transferred from the mobile robot to the operator. Teleoperated vehicles can be used in a variety of missions in air, on ground and in water. Therefore, different constructional types of robots can be designed for the different types of missions. This thesis aims to design and develop an unlimited-workspace teleoperation which includes an omnidirectional mobile robot as the slave system to be used in further researches. Initially, an omnidirectional mobile robot was manufactured and robot-operator interaction and efficient data transfer was provided with the established communication line. Wheel velocities were measured in real-time by Hall-effect sensors mounted on robot chassis to be integrated in controllers. A dynamic obstacle detection system, which is suitable for omnidirectional mobility, was developed and two obstacle avoidance algorithms (semi-autonomous and force reflecting) were created and tested. Distance information between the robot and the obstacles was collected by an array of sensors mounted on the robot. In the semi-autonomous teleoperation scenario, distance information is used to avoid obstacles autonomously and in the force-reflecting teleoperation scenario obstacles are informed to the user by sending back the artificially created forces acting on the slave robot. The test results indicate that obstacle avoidance performance of the developed vehicle with two algorithms is acceptable in all test scenarios. In addition, two control models were developed (kinematic and dynamic control) for the local controller of the slave robot. Also, kinematic controller was supported by gyroscope

    Type synthesis of 6-DOF mobile parallel link mechanisms based on screw theory

    Get PDF
    Mobile parallel mechanisms (MPMs), which are parallel mechanisms with moveable bases, have previously been proposed to resolve the limited workspace of conventional parallel mechanisms. However, most previous studies on the subject focused on the kinematic analysis of some specific MPMs and did not discuss a type synthesis method for MPMs. With this in mind, we propose a screw theory-based type synthesis method to find out possible 6-degrees-of-freedom (DOF) MPM structures. In our proposed method, the 6-DOF mobility is divided into 3-DOF planar motion and 3-DOF spatial motion, both of which are realized by the transmitted planar motions of the driving units. Separately, the type synthesis of the entire MPM is divided into that of the driving unit and connecting chain. To realize 3-DOF spatial motion, two methods, applying singularity configuration and adding an additional chain, are proposed as ways to restrict undesired motions for the synthesis of the connecting chain. The driving unit is synthesized via the same type-synthesis method as the connecting chain by considering the driving unit as a planar mechanism. The method used to integrate the driving unit and the connecting chain was constructed based on whether the end pair of the connecting chain should be connected with the driving unit directly or driven by it through an actuating mechanism. As a result, 284 possible types of MPM structure are suggested and four examples of MPMs with six DOFs were synthesized to verify the feasibility of the proposed method

    Gyroscopic Precession In Motion Modelling Of Ball-Shaped Robots

    Get PDF
    This study discusses kinematic and dynamic precession models for a rolling ball with a finite contact area and a point contact respectively. In literature, both conventions have been applied. In this paper, we discuss in detail the kinematic and dynamic models to describe the ball precession and the radius of a circular rolling path. The kinematic model can be used if the contact area and friction coefficient are sufficient to prevent slippage. The dynamic precession model has significance in multi-body simulation environments handling rolling balls with ideal point contacts. We have applied both the kinematic and dynamic precession model to evaluate the no-slip condition of the existing GimBall-robot. According to the result, the necessity of an external precession torque may cause slipping at lower velocities than expected if ignoring this torque.Peer reviewe

    Wheeled Mobile Robots: State of the Art Overview and Kinematic Comparison Among Three Omnidirectional Locomotion Strategies

    Get PDF
    In the last decades, mobile robotics has become a very interesting research topic in the feld of robotics, mainly because of population ageing and the recent pandemic emergency caused by Covid-19. Against this context, the paper presents an overview on wheeled mobile robot (WMR), which have a central role in nowadays scenario. In particular, the paper describes the most commonly adopted locomotion strategies, perception systems, control architectures and navigation approaches. After having analyzed the state of the art, this paper focuses on the kinematics of three omnidirectional platforms: a four mecanum wheels robot (4WD), a three omni wheel platform (3WD) and a two swerve-drive system (2SWD). Through a dimensionless approach, these three platforms are compared to understand how their mobility is afected by the wheel speed limitations that are present in every practical application. This original comparison has not been already presented by the literature and it can be used to improve our understanding of the kinematics of these mobile robots and to guide the selection of the most appropriate locomotion system according to the specifc application
    corecore