267 research outputs found

    A quasi-real-time inertialess microwave holographic imaging system

    Get PDF
    This thesis records the theoretical analysis and hardware development of a laboratory microwave imaging system which uses holographic principles. The application of an aperture synthesis technique and the electronic commutation of all antennae has resulted in a compact and economic assembly - which requires no moving parts and which, consequently, has a high field mapping speed potential. The relationship of this microwave holographic system to other established techniques is examined theoretically and the performance of the imaging system is demonstrated using conventional optically- and numerically-based reconstruction of the measured holograms. The high mapping speed potential of this system has allowed the exploitation of an imaging mode not usually associated with microwave holography. In particular, a certain antenna array specification leads to a versatile imaging system which corresponds closely in the laboratory scale to the widely used synthetic aperture radar principle. It is envisaged that the microwave holographic implementation of this latter principle be used as laboratory instrumentation in the elucidation of the interaction of hydrodynamic and electromagnetic waves. Some simple demonstrations of this application have been presented, and the concluding chapter also describes a suitable hardware specification. This thesis has also emphasised the hardware details of the imaging system since the development of the microwave and other electronic components represented a substantial part of this research and because the potential applications of the imaging principle have been found to be intimately linked to the tolerances of the various microwave components. Bibliography: pages 122-132

    Coding of synthetic aperture radar data

    Get PDF

    Metasurfaces for ultrathin optical devices with unusual functionalities

    Get PDF
    Metamaterials are artificial materials that are made from periodically arranged structures, showing properties that cannot be found in nature. The response of a metamaterial to the external field is defined by the geometry, orientation, and distribution of the artificial structures. Many groundbreaking discoveries, such as negative refraction, and super image resolution has been demonstrated based on metamaterials. Nevertheless, the difficulty in three-dimensional fabrication, especially when the operating band is located in the optical range, hinders their practical applications. As a two-dimensional counterpart, a metasurface consists of an array of planar optical antennas, which locally modify the properties of the scattered light. Metasurfaces do not require complicated three-dimensional nanofabrication techniques, and the complexity of the fabrication is greatly reduced. Also, the thickness of a metasurface can be deep subwavelength, making it possible to realize ultrathin devices. In this thesis, geometric metasurfaces are utilized to realize a series of optical devices with unusual functionalities. Phase gradient metasurface is used to split the incident light into left-handed polarized (LCP) and right-handed polarized (RCP) components, whose intensities can be used to determine the polarization state of the incident light. Then we propose a method to integrate two optical elements with different functionalities into a single metasurface device, and its overall performance is determined by the polarization of the incident light. After that, a helicity multiplexed metasurface hologram is demonstrated to reconstruct two images with high efficiency and broadband. The two images swap their positions with the helicity reversion of the incident light. Finally, a polarization rotator is presented, which can rotate the incident light to arbitrary polarization direction by using the non-chiral metasurface. The proposed metasurface devices may inspire the development of new optical devices, and expand the applications of metasurfaces in integrated optical systems

    LASER Tech Briefs, February 1995

    Get PDF
    Topics included in this issue of LASER Tech Briefs are: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Mechanics, Fabrication, and Mathematics and Information Sciences, an

    Seeing the invisible: Digital holography

    Get PDF
    For the past years there has been an increasing interest in developing mathematical and computational methods for digital holography. Holographic techniques furnish noninvasive tools for high-speed 3D live cell imaging. Holograms can be recorded in the millisecond or microsecond range without damaging samples. A hologram encodes the wave field scattered by an object as an interference pattern. Digital holography aims to create numerical images from digitally recorded holograms. We show here that partial differential equation constrained optimization, topological derivatives of shape functionals, iteratively regularized Gaussโ€“Newton methods, Bayesian inference, and Markov chain Monte Carlo techniques provide effective mathematical tools to invert holographic data with quantified uncertainty. Holography set-ups are particularly challenging because a single incident wave is employed. Similar tools could be useful in inverse scattering problems involving other types of waves and different emitter/receiver configurations, such as microwave imaging or elastography, for instance

    Wave tomography

    Get PDF

    Digital Holographic Interferometry for Temperature Field Measurements in Flowing Gases and Liquids

    Get PDF
    This Ph.D. dissertation introduces and elaborates the optical technique known as Digital Holographic Interferometry (DHI) in the field of applied fluid mechanics for the purpose of investigating the properties and visualization of flowing gases and liquids. The work deals mostly with the general aspects of using digital holographic interferometry as the main technique of investigation, deepening in some of its technical aspects for data treatment and visualization. It gradually present the evolving process of studying different forms of temperature fields, based on the distribution of its refractive index, starting with simple 2D distribution toward 3D distribution that is treated with tomographic approach. It brings to light main concepts and possibilities of using this technique for the field of fluid mechanics.Apart the general theoretical background introduced in the beginning of this thesis, each chapter contains an introduction to some more theoretical and technical aspects of the optical setup and data treatment that are needed for a better and full understanding of the process of capturing, treating and presenting the data. General conclusions are drawn at the end of each chapter.Throughout our work, we have achieved a deviation below tenths of degree Celsius between the temperature registered from the thermocouples, ANSYS simulations and the one measured by the optical technique for the case of heat measurements in water, falling within 5% of error margin for the case of a 2D temperature field. For the case of a 3D temperature field from a pulsatile jet with water as its working fluid, we estimated that the relative uncertainty of the temperature field measurement near the orifice is below 5%, compared to the relative uncertainty increasing up to 15% further from the orifice. We also achieved an increase of the range of measurement for the case of two-wavelength digital holographic interferometry.Each investigation is accompanied with a whole-field picture of visualizing the temperature and other important properties of the fluid/gas under study, which is one of the main advantages of this optical technique.This Ph.D. dissertation introduces and elaborates the optical technique known as Digital Holographic Interferometry (DHI) in the field of applied fluid mechanics for the purpose of investigating the properties and visualization of flowing gases and liquids. The work deals mostly with the general aspects of using digital holographic interferometry as the main technique of investigation, deepening in some of its technical aspects for data treatment and visualization. It gradually present the evolving process of studying different forms of temperature fields, based on the distribution of its refractive index, starting with simple 2D distribution toward 3D distribution that is treated with tomographic approach. It brings to light main concepts and possibilities of using this technique for the field of fluid mechanics.Apart the general theoretical background introduced in the beginning of this thesis, each chapter contains an introduction to some more theoretical and technical aspects of the optical setup and data treatment that are needed for a better and full understanding of the process of capturing, treating and presenting the data. General conclusions are drawn at the end of each chapter.Throughout our work, we have achieved a deviation below tenths of degree Celsius between the temperature registered from the thermocouples, ANSYS simulations and the one measured by the optical technique for the case of heat measurements in water, falling within 5% of error margin for the case of a 2D temperature field. For the case of a 3D temperature field from a pulsatile jet with water as its working fluid, we estimated that the relative uncertainty of the temperature field measurement near the orifice is below 5%, compared to the relative uncertainty increasing up to 15% further from the orifice. We also achieved an increase of the range of measurement for the case of two-wavelength digital holographic interferometry.Each investigation is accompanied with a whole-field picture of visualizing the temperature and other important properties of the fluid/gas under study, which is one of the main advantages of this optical technique.

    Target shadow profile reconstruction in forward scatter radar

    Get PDF
    This thesis is dedicated to the matter of imaging (further explained as profile reconstruction) in Forward Scatter Radars (FSR). Firstly, an introduction to radar systems, including forward scatter radar, is made, then an introduction to the scalar theory of diffraction and principles of holography follows. The application of holographic imaging principles in the microwave domain is studied. The practical modelling of forward scatter radar target signals is made, based on the theoretical expectations and approximations outlined. Theoretical background of the imaging in FSR is made, based on previously published work. A novel approach for profile reconstruction is introduced based on the practices of holographic imaging, together with simulated results. Experimental set-ups used in the feasibility proof are described and experimental results are presented for 8 different targets in both a single-node and multistatic configurations. Preliminary accuracy analysis of these reconstructed target profiles is done, outlining practical application issues and domain of accuracy. Quantitative measures of the accuracy of the reconstructed images are defined

    Millimetre wave imaging for concealed target detection

    Get PDF
    PhDConcealed weapon detection (CWD) has been a hot topic as the concern about pub- lic safety increases. A variety of approaches for the detection of concealed objects on the human body based on earth magnetic ยฏeld distortion, inductive magnetic ยฏeld, acoustic and ultrasonic, electromagnetic resonance, MMW (millimetre wave), THz, Infrared, x-ray technologies have been suggested and developed. Among all of them, MMW holographic imaging is considered as a promising approach due to the relatively high penetration and high resolution that it can oยฎer. Typical concealed target detection methods are classiยฏed into 2 categories, the ยฏrst one is a resonance based target identiยฏcation technique, and the second one is an imaging based system. For the former, the complex natural resonance (CNR) frequencies associated with a certain target are extracted and used for identiยฏcation, but this technique has an issue of high false alarm rate. The microwave/millimetre wave imaging systems can be categorized into two types: passive systems and active sys- tems. For the active microwave/millimetre wave imaging systems, the microwave holographic imaging approach was adopted in this thesis. Such a system can oper- ate at either a single frequency or multiple frequencies (wide band). An active, coherent, single frequency operation millimetre wave imaging system based on the theory of microwave holography was developed. Based on literature surveys and ยฏrst hand experimental results, this thesis aims to provide system level parame- ter determination to aid the development of a target detection imager. The goal is approached step by step in 7 chapters, with topics and issues addressed rang- ing from reviewing the past work, ยฏnding out the best candidate technology, i.e. the MMW holographic imaging combined with the resonance based target recog- i nition technique, the construction of the 94 GHz MMW holographic prototype imager, experimental trade-oยฎ investigation of system parameters, imager per- formance evaluation, low proยฏle components and image enhancement techniques, feasibility investigation of resonance based technique, to system implementation based on the parameters and results achieved. The task set forth in the beginning is completed by coming up with an entire system design in the end.

    ์‹ค์‹œ๊ฐ„ ๊ทผ๊ฑฐ๋ฆฌ ์˜์ƒํ™”๋ฅผ ์œ„ํ•œ MIMO ์—ญํ•ฉ์„ฑ ๊ฐœ๊ตฌ ๋ ˆ์ด๋” ์‹œ์Šคํ…œ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2022. 8. ๋‚จ์ƒ์šฑ.Microwave and millimeter wave (micro/mmW) imaging systems have advantages over other imaging systems in that they have penetration properties over non-metallic structures and non-ionization. However, these systems are commercially applicable in limited areas. Depending on the quality and size of the images, a system can be expensive and images cannot be provided in real-time. To overcome the challenges of the current micro/mmW imaging system, it is critical to suggest a new system concept and prove its potential benefits and hazards by demonstrating the testbed. This dissertation presents Ku1DMIC, a wide-band micro/mmW imaging system using Ku-band and 1D-MIMO array, which can overcome the challenges above. For cost-effective 3D imaging capabilities, Ku1DMIC uses 1D-MIMO array configuration and inverse synthetic aperture radar (ISAR) technique. At the same time, Ku1DMIC supports real-time data acquisition through a system-level design of a seamless interface with frequency modulated continuous wave (FMCW) radar. To show the feasibility of 3D imaging with Ku1DMIC and its real-time capabilities, an accelerated imaging algorithm, 1D-MIMO-ISAR RSA, is proposed and demonstrated. The detailed contributions of the dissertation are as follows. First, this dissertation presents Ku1DMIC โ€“ a Ku-band MIMO frequency-modulated continuous-wave (FMCW) radar experimental platform with real-time 2D near-field imaging capabilities. The proposed system uses Ku-band to cover the wider illumination area given the limited number of antennas and uses a fast ramp and wide-band FMCW waveform for rapid radar data acquisition while providing high-resolution images. The key design aspect behind the platform is stability, reconfigurability, and real-time capabilities, which allows investigating the exploration of the systemโ€™s strengths and weaknesses. To satisfy the design aspect, a digitally assisted platform is proposed and realized based on an AMD-Xilinx UltraScale+ Radio Frequency System on Chip (RFSoC). The experimental investigation for real-time 2D imaging has proved the ability of video-rate imaging at around 60 frames per second. Second, a waveform digital pre-distortion (DPD) method and calibration method are proposed to enhance the image quality. Even if a clean FMCW waveform is generated with the aid of the optimized waveform generator, the signal will inevitably suffer from distortion, especially in the RF subsystem of the platform. In near-field imaging applications, the waveform DPD is not effective at suppressing distortion in wide-band FMCW radar systems. To solve this issue, the LO-DPD architecture and binary search based DPD algorithm are proposed to make the waveform DPD effective in Ku1DMIC. Furthermore, an image-domain optimization correction method is proposed to compensate for the remaining errors that cannot be eliminated by the waveform DPD. For robustness to various unwanted signals such as noise and clutter signals, two regularized least squares problems are applied and compared: the generalized Tikhonov regularization and the total variation (TV) regularization. Through various 2D imaging experiments, it is confirmed that both methods can enhance the image quality by reducing the sidelobe level. Lastly, the research is conducted to realize real-time 3D imaging by applying the ISAR technique to Ku1DMIC. The realization of real-time 3D imaging using 1D-MIMO array configuration is impactful in that this configuration can significantly reduce the costs of the 3D imaging system and enable imaging of moving objects. To this end, the signal model for the 1D-MIMO-ISAR configuration is presented, and then the 1D-MIMO-ISAR range stacking algorithm (RSA) is proposed to accelerate the imaging reconstruction process. The proposed 1D-MIMO-ISAR RSA can reconstruct images within hundreds of milliseconds while maintaining almost the same image quality as the back-projection algorithm, bringing potential use for real-time 3D imaging. It also describes strategies for setting ROI, considering the real-world situations in which objects enter and exit the field of view, and allocating GPU memory. Extensive simulations and experiments have demonstrated the feasibility and potential benefits of 1D-MIMO-IASR configuration and 1D-MIMO-ISAR RSA.๋งˆ์ดํฌ๋กœํŒŒ ๋ฐ ๋ฐ€๋ฆฌ๋ฏธํ„ฐํŒŒ(micro/mmW) ์˜์ƒํ™” ์‹œ์Šคํ…œ์€ ๋น„๊ธˆ์† ๊ตฌ์กฐ ๋ฐ ๋น„์ด์˜จํ™”์— ๋น„ํ•ด ์นจํˆฌ ํŠน์„ฑ์ด ์žˆ๋‹ค๋Š” ์ ์—์„œ ๋‹ค๋ฅธ ์ด๋ฏธ์ง• ์‹œ์Šคํ…œ์— ๋น„ํ•ด ์žฅ์ ์ด ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ์‹œ์Šคํ…œ์€ ์ œํ•œ๋œ ์˜์—ญ์—์„œ๋งŒ ์ƒ์—…์ ์œผ๋กœ ์ ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ์ด๋ฏธ์ง€์˜ ํ’ˆ์งˆ๊ณผ ํฌ๊ธฐ์— ๋”ฐ๋ผ ์‹œ์Šคํ…œ์ด ๋งค์šฐ ๊ณ ๊ฐ€์ผ ์ˆ˜ ์žˆ์œผ๋ฉฐ ์ด๋ฏธ์ง€๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ œ๊ณตํ•  ์ˆ˜ ์—†๋Š” ํ˜„ํ™ฉ์ด๋‹ค. ํ˜„์žฌ์˜ micro/mmW ์ด๋ฏธ์ง• ์‹œ์Šคํ…œ์˜ ๋ฌธ์ œ๋ฅผ ๊ทน๋ณตํ•˜๋ ค๋ฉด ์ƒˆ๋กœ์šด ์‹œ์Šคํ…œ ๊ฐœ๋…์„ ์ œ์•ˆํ•˜๊ณ  ํ…Œ์ŠคํŠธ๋ฒ ๋“œ๋ฅผ ์‹œ์—ฐํ•˜์—ฌ ์ž ์žฌ์ ์ธ ์ด์ ๊ณผ ์œ„ํ—˜์„ ์ž…์ฆํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” Ku-band์™€ 1D-MIMO ์–ด๋ ˆ์ด๋ฅผ ์ด์šฉํ•œ ๊ด‘๋Œ€์—ญ micro/mmW ์ด๋ฏธ์ง• ์‹œ์Šคํ…œ์ธ Ku1DMIC๋ฅผ ์ œ์•ˆํ•˜์—ฌ ์œ„์™€ ๊ฐ™์€ ๋ฌธ์ œ์ ์„ ๊ทน๋ณตํ•  ์ˆ˜ ์žˆ๋‹ค. ๋น„์šฉ ํšจ์œจ์ ์ธ 3์ฐจ์› ์˜์ƒํ™” ๊ธฐ๋Šฅ์„ ์œ„ํ•ด Ku1DMIC๋Š” 1D-MIMO ๋ฐฐ์—ด ๊ธฐ์ˆ ๊ณผ ISAR(Inverse Synthetic Aperture Radar) ๊ธฐ์ˆ ์„ ์‚ฌ์šฉํ•œ๋‹ค. ๋™์‹œ์— Ku1DMIC๋Š” ์ฃผํŒŒ์ˆ˜ ๋ณ€์กฐ ์—ฐ์†ํŒŒ (FMCW) ๋ ˆ์ด๋”์™€์˜ ์›ํ™œํ•œ ์ธํ„ฐํŽ˜์ด์Šค์˜ ์‹œ์Šคํ…œ ์ˆ˜์ค€ ์„ค๊ณ„๋ฅผ ํ†ตํ•ด ์‹ค์‹œ๊ฐ„ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘์„ ์ง€์›ํ•œ๋‹ค. Ku1DMIC๋ฅผ ์‚ฌ์šฉํ•œ 3์ฐจ์› ์˜์ƒํ™”์˜ ๊ตฌํ˜„ ๋ฐ ์‹ค์‹œ๊ฐ„ ๊ธฐ๋Šฅ์˜ ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ์ฃผ๊ธฐ ์œ„ํ•ด, 2์ฐจ์› ์˜์ƒํ™”๋ฅผ ์œ„ํ•œ 1D-MIMO RSA๊ณผ 3์ฐจ์› ์˜์ƒํ™”๋ฅผ ์œ„ํ•œ 1D-MIMO-ISAR RSA๊ฐ€ ์ œ์•ˆ๋˜๊ณ  Ku1DMIC์—์„œ ๊ตฌํ˜„๋œ๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์˜ ์ฃผ์š” ๊ธฐ์—ฌ๋Š” Ku-band 1D-MIMO ๋ฐฐ์—ด ๊ธฐ๋ฐ˜ ์˜์ƒํ™” ์‹œ์Šคํ…œ ํ”„๋กœํ† ํƒ€์ž…์„ ๊ฐœ๋ฐœ ๋ฐ ํ…Œ์ŠคํŠธํ•˜๊ณ , ISAR ๊ธฐ๋ฐ˜ 3์ฐจ์› ์˜์ƒํ™” ๊ธฐ๋Šฅ์„ ๊ฒ€์‚ฌํ•˜๊ณ , ์‹ค์‹œ๊ฐ„ 3์ฐจ์› ์˜์ƒํ™” ๊ฐ€๋Šฅ์„ฑ์„ ์กฐ์‚ฌํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ด์— ๋Œ€ํ•œ ์„ธ๋ถ€์ ์ธ ๊ธฐ์—ฌ ํ•ญ๋ชฉ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ฒซ์งธ, ์‹ค์‹œ๊ฐ„ 2D ๊ทผ๊ฑฐ๋ฆฌ์žฅ ์ด๋ฏธ์ง• ๊ธฐ๋Šฅ์„ ๊ฐ–์ถ˜ Ku ๋Œ€์—ญ MIMO ์ฃผํŒŒ์ˆ˜ ๋ณ€์กฐ ์—ฐ์†ํŒŒ(FMCW) ๋ ˆ์ด๋” ์‹คํ—˜ ํ”Œ๋žซํผ์ธ Ku1DMIC๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ์‹œ์Šคํ…œ์€ ์ œํ•œ๋œ ์ˆ˜์˜ ์•ˆํ…Œ๋‚˜์—์„œ ๋” ๋„“์€ ์กฐ๋ช… ์˜์—ญ์„ ์ปค๋ฒ„ํ•˜๊ธฐ ์œ„ํ•ด Ku ๋Œ€์—ญ์„ ์‚ฌ์šฉํ•˜๊ณ  ๊ณ ํ•ด์ƒ๋„ ์ด๋ฏธ์ง€๋ฅผ ์ œ๊ณตํ•˜๋ฉด์„œ ๋น ๋ฅธ ๋ ˆ์ด๋” ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘์„ ์œ„ํ•ด ๊ณ ์† ๋žจํ”„ ๋ฐ ๊ด‘๋Œ€์—ญ FMCW ํŒŒํ˜•์„ ์‚ฌ์šฉํ•œ๋‹ค. ํ”Œ๋žซํผ์˜ ํ•ต์‹ฌ ์„ค๊ณ„ ์›์น™์€ ์•ˆ์ •์„ฑ, ์žฌ๊ตฌ์„ฑ ๊ฐ€๋Šฅ์„ฑ ๋ฐ ์‹ค์‹œ๊ฐ„ ๊ธฐ๋Šฅ์œผ๋กœ ์‹œ์Šคํ…œ์˜ ๊ฐ•์ ๊ณผ ์•ฝ์ ์„ ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ํƒ์ƒ‰ํ•œ๋‹ค. ์„ค๊ณ„ ์›์น™์„ ๋งŒ์กฑ์‹œํ‚ค๊ธฐ ์œ„ํ•ด AMD-Xilinx UltraScale+ RFSoC(Radio Frequency System on Chip)๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋””์ง€ํ„ธ ์ง€์› ํ”Œ๋žซํผ์„ ์ œ์•ˆํ•˜๊ณ  ๊ตฌํ˜„ํ•œ๋‹ค. ์‹ค์‹œ๊ฐ„ 2D ์ด๋ฏธ์ง•์— ๋Œ€ํ•œ ์‹คํ—˜์  ์กฐ์‚ฌ๋Š” ์ดˆ๋‹น ์•ฝ 60ํ”„๋ ˆ์ž„์—์„œ ๋น„๋””์˜ค ์†๋„ ์ด๋ฏธ์ง•์˜ ๋Šฅ๋ ฅ์„ ์ž…์ฆํ–ˆ๋‹ค. ๋‘˜์งธ, ์˜์ƒ ํ’ˆ์งˆ ํ–ฅ์ƒ์„ ์œ„ํ•œ ํŒŒํ˜• ๋””์ง€ํ„ธ ์ „์น˜์™œ๊ณก(DPD) ๋ฐฉ๋ฒ•๊ณผ ๋ณด์ • ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ตœ์ ํ™”๋œ ํŒŒํ˜• ๋ฐœ์ƒ๊ธฐ์˜ ๋„์›€์œผ๋กœ ๊นจ๋—ํ•œ FMCW ํŒŒํ˜•์ด ์ƒ์„ฑ๋˜๋”๋ผ๋„ ํŠนํžˆ ํ”Œ๋žซํผ์˜ RF ํ•˜์œ„ ์‹œ์Šคํ…œ์—์„œ ์‹ ํ˜ธ๋Š” ํ•„์—ฐ์ ์œผ๋กœ ์™œ๊ณก์„ ๊ฒช๊ฒŒ๋œ๋‹ค. ๊ทผ๊ฑฐ๋ฆฌ ์˜์ƒํ™” ์‘์šฉ ๋ถ„์•ผ์—์„œ๋Š” ํŒŒํ˜• DPD๋Š” ๊ด‘๋Œ€์—ญ FMCW ๋ ˆ์ด๋” ์‹œ์Šคํ…œ์˜ ์™œ๊ณก์„ ์–ต์ œํ•˜๋Š” ๋ฐ ํšจ๊ณผ์ ์ด์ง€ ์•Š๋‹ค. ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด Ku1DMIC์—์„œ ํŒŒํ˜• DPD๊ฐ€ ์œ ํšจํ•˜๋„๋ก LO-DPD ์•„ํ‚คํ…์ฒ˜์™€ ์ด์ง„ ํƒ์ƒ‰ ๊ธฐ๋ฐ˜ DPD ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ๋˜ํ•œ, ํŒŒํ˜• DPD๋กœ ์ œ๊ฑฐํ•  ์ˆ˜ ์—†๋Š” ๋‚˜๋จธ์ง€ ์˜ค๋ฅ˜๋ฅผ ๋ณด์ƒํ•˜๊ธฐ ์œ„ํ•ด ์ด๋ฏธ์ง€ ์˜์—ญ ์ตœ์ ํ™” ๋ณด์ • ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋…ธ์ด์ฆˆ ๋ฐ ํด๋Ÿฌํ„ฐ ์‹ ํ˜ธ์™€ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ์›์น˜ ์•Š๋Š” ์‹ ํ˜ธ์— ๋Œ€ํ•œ ๊ฒฌ๊ณ ์„ฑ์„ ์œ„ํ•ด ์ผ๋ฐ˜ํ™”๋œ Tikhonov ์ •๊ทœํ™” ๋ฐ ์ „์ฒด ๋ณ€๋™(TV) ์ •๊ทœํ™”๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ์ •๊ทœํ™”๋œ ์ตœ์†Œ ์ž์Šน ๋ฌธ์ œ๋ฅผ ์ ์šฉ ํ›„ ๋น„๊ตํ•œ๋‹ค. ๋‹ค์–‘ํ•œ 2์ฐจ์› ์˜์ƒํ™” ์‹คํ—˜์„ ํ†ตํ•ด ๋‘ ๋ฐฉ๋ฒ• ๋ชจ๋‘ ๋ถ€์—ฝ ๋ ˆ๋ฒจ์„ ์ค„์—ฌ ํ™”์งˆ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ISAR ๊ธฐ๋ฒ•์„ 2์ฐจ์› ์˜์ƒ ํ”Œ๋žซํผ์— ์ ์šฉํ•˜์—ฌ ์‹ค์‹œ๊ฐ„ 3์ฐจ์› ์˜์ƒ์„ ๊ตฌํ˜„ํ•˜๊ธฐ ์œ„ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•œ๋‹ค. 1D-MIMO-ISAR ๊ตฌ์„ฑ์—์„œ ์‹ค์‹œ๊ฐ„ 3D ์ด๋ฏธ์ง•์˜ ๊ตฌํ˜„์€ ์ด๋Ÿฌํ•œ ๊ตฌ์„ฑ์ด 3D ์ด๋ฏธ์ง• ์‹œ์Šคํ…œ์˜ ๋น„์šฉ์„ ํฌ๊ฒŒ ์ค„์ผ ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์—์„œ ์˜ํ–ฅ๋ ฅ์ด ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ด ๋…ผ๋ฌธ์—์„œ๋Š” 1D-MIMO-ISAR ๊ตฌ์„ฑ์— ๋Œ€ํ•œ ์ด๋ฏธ์ง• ์žฌ๊ตฌ์„ฑ์„ ๊ฐ€์†ํ™”ํ•˜๊ธฐ ์œ„ํ•ด 1D-MIMO-ISAR ๋ฒ”์œ„ ์Šคํƒœํ‚น ์•Œ๊ณ ๋ฆฌ์ฆ˜(RSA)์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ๋œ 1D-MIMO-ISAR RSA๋Š” ๋„๋ฆฌ ์•Œ๋ ค์ง„ Back-Projection ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ๊ฑฐ์˜ ๋™์ผํ•œ ์ด๋ฏธ์ง€ ํ’ˆ์งˆ์„ ์œ ์ง€ํ•˜๋ฉด์„œ๋„ ์ˆ˜๋ฐฑ ๋ฐ€๋ฆฌ์ดˆ ์ด๋‚ด์— ์ด๋ฏธ์ง€๋ฅผ ์žฌ๊ตฌ์„ฑํ•จ์œผ๋กœ์จ ์‹ค์‹œ๊ฐ„ ์˜์ƒํ™”์— ๋Œ€ํ•œ ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ์ค€๋‹ค. ๋˜ํ•œ ๋ฌผ์ฒด๊ฐ€ ์‹œ์•ผ์— ๋“ค์–ด์˜ค๊ณ  ๋‚˜๊ฐ€๋Š” ์‹ค์ œ ์ƒํ™ฉ์„ ๊ณ ๋ คํ•˜๊ธฐ ์œ„ํ•œ ROI ์„ค์ •, ๊ทธ๋ฆฌ๊ณ  ๋ฉ”๋ชจ๋ฆฌ ํ• ๋‹น์— ๋Œ€ํ•œ ์ „๋žต์„ ์„ค๋ช…ํ•œ๋‹ค. ๊ด‘๋ฒ”์œ„ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ์‹คํ—˜์„ ํ†ตํ•ด 1D-MIMO-IASR ๊ตฌ์„ฑ ๋ฐ 1D-MIMO-ISAR RSA์˜ ๊ฐ€๋Šฅ์„ฑ๊ณผ ์ž ์žฌ์  ์ด์ ์„ ํ™•์ธํ•œ๋‹ค.1 INTRODUCTION 1 1.1 Microwave and millimeter-wave imaging 1 1.2 Imaging with radar system 2 1.3 Challenges and motivation 5 1.4 Outline of the dissertation 8 2 FUNDAMENTAL OF TWO-DIMENSIONAL IMAGING USING A MIMO RADAR 9 2.1 Signal model 9 2.2 Consideration of waveform 12 2.3 Image reconstruction algorithm 16 2.3.1 Back-projection algorithm 16 2.3.2 1D-MIMO range-migration algorithm 20 2.3.3 1D-MIMO range stacking algorithm 27 2.4 Sampling criteria and resolution 31 2.5 Simulation results 36 3 MIMO-FMCW RADAR IMPLEMENTATION WITH 16 TX - 16 RX ONE- DIMENSIONAL ARRAYS 46 3.1 Wide-band FMCW waveform generator architecture 46 3.2 Overall system architecture 48 3.3 Antenna and RF transceiver module 53 3.4 Wide-band FMCW waveform generator 55 3.5 FPGA-based digital hardware design 63 3.6 System integration and software design 71 3.7 Testing and measurement 75 3.7.1 Chirp waveform measurement 75 3.7.2 Range profile measurement 77 3.7.3 2-D imaging test 79 4 METHODS OF IMAGE QUALITY ENHANCEMENT 84 4.1 Signal model 84 4.2 Digital pre-distortion of chirp signal 86 4.2.1 Proposed DPD hardware system 86 4.2.2 Proposed DPD algorithm 88 4.2.3 Measurement results 90 4.3 Robust calibration method for signal distortion 97 4.3.1 Signal model 98 4.3.2 Problem formulation 99 4.3.3 Measurement results 105 5 THREE-DIMENSIONAL IMAGING USING 1-D ARRAY SYSTEM AND ISAR TECHNIQUE 110 5.1 Formulation for 1D-MIMO-ISAR RSA 111 5.2 Algorithm implementation 114 5.3 Simulation results 120 5.4 Experimental results 122 6 CONCLUSIONS AND FUTURE WORK 127 6.1 Conclusions 127 6.2 Future work 129 6.2.1 Effects of antenna polarization in the Ku-band 129 6.2.2 Forward-looking near-field ISAR configuration 130 6.2.3 Estimation of the movement errors in ISAR configuration 131 Abstract (In Korean) 145 Acknowlegement 148๋ฐ•
    • โ€ฆ
    corecore