310 research outputs found

    Speeding-up the decision making of a learning agent using an ion trap quantum processor

    Full text link
    We report a proof-of-principle experimental demonstration of the quantum speed-up for learning agents utilizing a small-scale quantum information processor based on radiofrequency-driven trapped ions. The decision-making process of a quantum learning agent within the projective simulation paradigm for machine learning is implemented in a system of two qubits. The latter are realized using hyperfine states of two frequency-addressed atomic ions exposed to a static magnetic field gradient. We show that the deliberation time of this quantum learning agent is quadratically improved with respect to comparable classical learning agents. The performance of this quantum-enhanced learning agent highlights the potential of scalable quantum processors taking advantage of machine learning.Comment: 21 pages, 7 figures, 2 tables. Author names now spelled correctly; sections rearranged; changes in the wording of the manuscrip

    Quantum Inference on Bayesian Networks

    Get PDF
    Performing exact inference on Bayesian networks is known to be #P-hard. Typically approximate inference techniques are used instead to sample from the distribution on query variables given the values ee of evidence variables. Classically, a single unbiased sample is obtained from a Bayesian network on nn variables with at most mm parents per node in time O(nmP(e)−1)\mathcal{O}(nmP(e)^{-1}), depending critically on P(e)P(e), the probability the evidence might occur in the first place. By implementing a quantum version of rejection sampling, we obtain a square-root speedup, taking O(n2mP(e)−12)\mathcal{O}(n2^mP(e)^{-\frac12}) time per sample. We exploit the Bayesian network's graph structure to efficiently construct a quantum state, a q-sample, representing the intended classical distribution, and also to efficiently apply amplitude amplification, the source of our speedup. Thus, our speedup is notable as it is unrelativized -- we count primitive operations and require no blackbox oracle queries.Comment: 8 pages, 3 figures. Submitted to PR

    Experimental quantum speed-up in reinforcement learning agents

    Get PDF
    Increasing demand for algorithms that can learn quickly and efficiently has led to a surge of development within the field of artificial intelligence (AI). An important paradigm within AI is reinforcement learning (RL), where agents interact with environments by exchanging signals via a communication channel. Agents can learn by updating their behaviour based on obtained feedback. The crucial question for practical applications is how fast agents can learn to respond correctly. An essential figure of merit is therefore the learning time. While various works have made use of quantum mechanics to speed up the agent's decision-making process, a reduction in learning time has not been demonstrated yet. Here we present a RL experiment where the learning of an agent is boosted by utilizing a quantum communication channel with the environment. We further show that the combination with classical communication enables the evaluation of such an improvement, and additionally allows for optimal control of the learning progress. This novel scenario is therefore demonstrated by considering hybrid agents, that alternate between rounds of quantum and classical communication. We implement this learning protocol on a compact and fully tunable integrated nanophotonic processor. The device interfaces with telecom-wavelength photons and features a fast active feedback mechanism, allowing us to demonstrate the agent's systematic quantum advantage in a setup that could be readily integrated within future large-scale quantum communication networks.Comment: 10 pages, 4 figure

    Projective simulation with generalization

    Full text link
    The ability to generalize is an important feature of any intelligent agent. Not only because it may allow the agent to cope with large amounts of data, but also because in some environments, an agent with no generalization capabilities cannot learn. In this work we outline several criteria for generalization, and present a dynamic and autonomous machinery that enables projective simulation agents to meaningfully generalize. Projective simulation, a novel, physical approach to artificial intelligence, was recently shown to perform well in standard reinforcement learning problems, with applications in advanced robotics as well as quantum experiments. Both the basic projective simulation model and the presented generalization machinery are based on very simple principles. This allows us to provide a full analytical analysis of the agent's performance and to illustrate the benefit the agent gains by generalizing. Specifically, we show that already in basic (but extreme) environments, learning without generalization may be impossible, and demonstrate how the presented generalization machinery enables the projective simulation agent to learn.Comment: 14 pages, 9 figure

    Quantum tree-based planning

    Get PDF
    Reinforcement Learning is at the core of a recent revolution in Arti cial Intelligence. Simultaneously, we are witnessing the emergence of a new  eld: Quantum Machine Learning. In the context of these two major developments, this work addresses the interplay between Quantum Computing and Reinforcement Learning. Learning by interaction is possible in the quantum setting using the concept of oraculization of environments. The paper extends previous oracular instances to address more general stochastic environments. In this setting, we developed a novel quantum algorithm for near-optimal decision-making based on the Reinforcement Learning paradigm known as Sparse Sampling. The proposed algorithm exhibits a quadratic speedup compared to its classical counterpart. To the best of the authors' knowledge, this is the  first quantum planning algorithm exhibiting a time complexity independent of the number of states of the environment, which makes it suitable for large state space environments, where planning is otherwise intractable.This work is financed by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia, within project UIDB/50014/2020

    Multiqubit and multilevel quantum reinforcement learning with quantum technologies

    Get PDF
    We propose a protocol to perform quantum reinforcement learning with quantum technologies. At variance with recent results on quantum reinforcement learning with superconducting circuits, in our current protocol coherent feedback during the learning process is not required, enabling its implementation in a wide variety of quantum systems. We consider diverse possible scenarios for an agent, an environment, and a register that connects them, involving multiqubit and multilevel systems, as well as open-system dynamics. We finally propose possible implementations of this protocol in trapped ions and superconducting circuits. The field of quantum reinforcement learning with quantum technologies will enable enhanced quantum control, as well as more efficient machine learning calculations.We acknowledge support from CEDENNA basal grant No. FB0807 and Direccion de Postgrado USACH (FAC-L), FONDECYT under grant No. 1140194 (JCR), Spanish MINECO/FEDER FIS2015-69983-P and Basque Government IT986-16 (LL and ES), and Ramon y Cajal Grant RYC-2012-11391 (LL)

    Towards interpretable quantum machine learning via single-photon quantum walks

    Full text link
    Variational quantum algorithms represent a promising approach to quantum machine learning where classical neural networks are replaced by parametrized quantum circuits. However, both approaches suffer from a clear limitation, that is a lack of interpretability. Here, we present a variational method to quantize projective simulation (PS), a reinforcement learning model aimed at interpretable artificial intelligence. Decision making in PS is modeled as a random walk on a graph describing the agent's memory. To implement the quantized model, we consider quantum walks of single photons in a lattice of tunable Mach-Zehnder interferometers trained via variational algorithms. Using an example from transfer learning, we show that the quantized PS model can exploit quantum interference to acquire capabilities beyond those of its classical counterpart. Finally, we discuss the role of quantum interference for training and tracing the decision making process, paving the way for realizations of interpretable quantum learning agents.Comment: 11+8 pages, 6+9 figures, 2 tables. F. Flamini and M. Krumm contributed equally to this wor

    A Survey on Quantum Reinforcement Learning

    Full text link
    Quantum reinforcement learning is an emerging field at the intersection of quantum computing and machine learning. While we intend to provide a broad overview of the literature on quantum reinforcement learning (our interpretation of this term will be clarified below), we put particular emphasis on recent developments. With a focus on already available noisy intermediate-scale quantum devices, these include variational quantum circuits acting as function approximators in an otherwise classical reinforcement learning setting. In addition, we survey quantum reinforcement learning algorithms based on future fault-tolerant hardware, some of which come with a provable quantum advantage. We provide both a birds-eye-view of the field, as well as summaries and reviews for selected parts of the literature.Comment: 62 pages, 16 figure

    Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe

    Get PDF
    Quantum optimal control, a toolbox for devising and implementing the shapes of external fields that accomplish given tasks in the operation of a quantum device in the best way possible, has evolved into one of the cornerstones for enabling quantum technologies. The last few years have seen a rapid evolution and expansion of the field. We review here recent progress in our understanding of the controllability of open quantum systems and in the development and application of quantum control techniques to quantum technologies. We also address key challenges and sketch a roadmap for future developments
    • …
    corecore