1,101 research outputs found

    Constructing Sobol' sequences with better two-dimensional projections

    Get PDF
    Direction numbers for generating Sobol' sequences that satisfy the so-called Property A in up to 1111 dimensions have previously been given in Joe and Kuo [ACM Trans. Math. Software, 29 (2003), pp. 49ā€“57]. However, these Sobol' sequences may have poor two-dimensional projections. Here we provide a new set of direction numbers alleviating this problem. These are obtained by treating Sobol' sequences in d dimensions as (t, d)-sequences and then optimizing the t-values of the two-dimensional projections. Our target dimension is 21201

    Hashing for Similarity Search: A Survey

    Full text link
    Similarity search (nearest neighbor search) is a problem of pursuing the data items whose distances to a query item are the smallest from a large database. Various methods have been developed to address this problem, and recently a lot of efforts have been devoted to approximate search. In this paper, we present a survey on one of the main solutions, hashing, which has been widely studied since the pioneering work locality sensitive hashing. We divide the hashing algorithms two main categories: locality sensitive hashing, which designs hash functions without exploring the data distribution and learning to hash, which learns hash functions according the data distribution, and review them from various aspects, including hash function design and distance measure and search scheme in the hash coding space

    Toward a unified theory of sparse dimensionality reduction in Euclidean space

    Get PDF
    Let Ī¦āˆˆRmƗn\Phi\in\mathbb{R}^{m\times n} be a sparse Johnson-Lindenstrauss transform [KN14] with ss non-zeroes per column. For a subset TT of the unit sphere, Īµāˆˆ(0,1/2)\varepsilon\in(0,1/2) given, we study settings for m,sm,s required to ensure EĪ¦supā”xāˆˆTāˆ£āˆ„Ī¦xāˆ„22āˆ’1āˆ£<Īµ, \mathop{\mathbb{E}}_\Phi \sup_{x\in T} \left|\|\Phi x\|_2^2 - 1 \right| < \varepsilon , i.e. so that Ī¦\Phi preserves the norm of every xāˆˆTx\in T simultaneously and multiplicatively up to 1+Īµ1+\varepsilon. We introduce a new complexity parameter, which depends on the geometry of TT, and show that it suffices to choose ss and mm such that this parameter is small. Our result is a sparse analog of Gordon's theorem, which was concerned with a dense Ī¦\Phi having i.i.d. Gaussian entries. We qualitatively unify several results related to the Johnson-Lindenstrauss lemma, subspace embeddings, and Fourier-based restricted isometries. Our work also implies new results in using the sparse Johnson-Lindenstrauss transform in numerical linear algebra, classical and model-based compressed sensing, manifold learning, and constrained least squares problems such as the Lasso
    • ā€¦
    corecore