58 research outputs found

    Speeding Up Elliptic Curve Discrete Logarithm Computations with Point Halving

    Get PDF
    Pollard rho method and its parallelized variants are at present known as the best generic algorithms for computing elliptic curve discrete logarithms. We propose new iteration function for the rho method by exploiting the fact that point halving is more efficient than point addition for elliptic curves over binary fields. We present a careful analysis of the alternative rho method with new iteration function. Compared to the previous rr-adding walk, generally the new method can achieve a significant speedup for computing elliptic curve discrete logarithms over binary fields. For instance, for certain NIST-recommended curves over binary fields, the new method is about 27\% faster than the previous best methods in single-instance Pollard rho method. When running several instances of Pollard rho method concurrently, and computing the inversions using the simultaneous inversion algorithm by Peter Montgomery, the new method is about 12-17\% faster than the previous best methods

    Algorithms for improved performance in cryptographic protocols.

    Full text link

    Efficient arithmetic on low-genus curves

    Get PDF

    Algebraic Curves and Cryptographic Protocols for the e-society

    Get PDF
    Amb l'augment permanent de l'adopció de sistemes intel·ligents de tot tipus en la societat actual apareixen nous reptes. Avui en dia quasi tothom en la societat moderna porta a sobre almenys un telèfon intel·ligent, si no és que porta encara més dispositius capaços d'obtenir dades personals, com podria ser un smartwatch per exemple. De manera similar, pràcticament totes les cases tindran un comptador intel·ligent en el futur pròxim per a fer un seguiment del consum d'energia. També s'espera que molts més dispositius del Internet de les Coses siguin instal·lats de manera ubiqua, recol·lectant informació dels seus voltants i/o realitzant accions, com per exemple en sistemes d'automatització de la llar, estacions meteorològiques o dispositius per la ciutat intel·ligent en general. Tots aquests dispositius i sistemes necessiten enviar dades de manera segura i confidencial, les quals poden contindre informació sensible o de caire privat. A més a més, donat el seu ràpid creixement, amb més de nou mil milions de dispositius en tot el món actualment, s'ha de tenir en compte la quantitat de dades que cal transmetre. En aquesta tesi mostrem la utilitat de les corbes algebraiques sobre cossos finits en criptosistemes de clau pública, en particular la de les corbes de gènere 2, ja que ofereixen la mida de clau més petita per a un nivell de seguretat donat i això redueix de manera significativa el cost total de comunicacions d'un sistema, a la vegada que manté un rendiment raonable. Analitzem com la valoració 2-àdica del cardinal de la Jacobiana augmenta en successives extensions quadràtiques, considerant corbes de gènere 2 en cossos de característica senar, incloent les supersingulars. A més, millorem els algoritmes actuals per a computar la meitat d'un divisor d'una corba de gènere 2 sobre un cos binari, cosa que pot ser útil en la multiplicació escalar, que és l'operació principal en criptografia de clau pública amb corbes. Pel que fa a la privacitat, presentem un sistema de pagament d'aparcament per mòbil que permet als conductors pagar per aparcar mantenint la seva privacitat, i per tant impedint que el proveïdor del servei o un atacant obtinguin un perfil de conducta d'aparcament. Finalment, oferim protocols de smart metering millorats, especialment pel que fa a la privacitat i evitant l'ús de terceres parts de confiança.Con el aumento permanente de la adopción de sistemas inteligentes de todo tipo en la sociedad actual aparecen nuevos retos. Hoy en día prácticamente todos en la sociedad moderna llevamos encima al menos un teléfono inteligente, si no es que llevamos más dispositivos capaces de obtener datos personales, como podría ser un smartwatch por ejemplo. De manera similar, en el futuro cercano la mayoría de las casas tendrán un contador inteligente para hacer un seguimiento del consumo de energía. También se espera que muchos más dispositivos del Internet de las Cosas sean instalados de manera ubicua, recolectando información de sus alrededores y/o realizando acciones, como por ejemplo en sistemas de automatización del hogar, estaciones meteorológicas o dispositivos para la ciudad inteligente en general. Todos estos dispositivos y sistemas necesitan enviar datos de manera segura y confidencial, los cuales pueden contener información sensible o de ámbito personal. Además, dado su rápido crecimiento, con más de nueve mil millones de dispositivos en todo el mundo actualmente, hay que tener en cuenta la cantidad de datos a transmitir. En esta tesis mostreamos la utilidad de las curvas algebraicas sobre cuerpos finitos en criptosistemas de clave pública, en particular la de las curvas de género 2, ya que ofrecen el tamaño de clave más pequeño para un nivel de seguridad dado y esto disminuye de manera significativa el coste total de comunicaciones del sistema, a la vez que mantiene un rendimiento razonable. Analizamos como la valoración 2-ádica del cardinal de la Jacobiana aumenta en sucesivas extensiones cuadráticas, considerando curvas de género 2 en cuerpos de característica importa, incluyendo las supersingulares. Además, mejoramos los algoritmos actuales para computar la mitad de un divisor de una curva de género 2 sobre un cuerpo binario, lo cual puede ser útil en la multiplicación escalar, que es la operación principal en criptografía de clave pública con curvas. Respecto a la privacidad, presentamos un sistema de pago de aparcamiento por móvil que permite a los conductores pagar para aparcar manteniendo su privacidad, y por lo tanto impidiendo que el proveedor del servicio o un atacante obtengan un perfil de conducta de aparcamiento. Finalmente, ofrecemos protocolos de smart metering mejorados, especialmente en lo relativo a la privacidad y evitando el uso de terceras partes de confianza.With the ever increasing adoption of smart systems of every kind throughout society, new challenges arise. Nowadays, almost everyone in modern societies carries a smartphone at least, if not even more devices than can also gather personal data, like a smartwatch or a fitness wristband for example. Similarly, practically all homes will have a smart meter in the near future for billing and energy consumption monitoring, and many other Internet of Things devices are expected to be installed ubiquitously, obtaining information of their surroundings and/or performing some action, like for example, home automation systems, weather detection stations or devices for the smart city in general. All these devices and systems need to securely and privately transmit some data, which can be sensitive and personal information. Moreover, with a rapid increase of their number, with already more than nine billion devices worldwide, the amount of data to be transmitted has to be considered. In this thesis we show the utility of algebraic curves over finite fields in public key cryptosystems, specially genus 2 curves, since they offer the minimum key size for a given security level and that significantly reduces the total communication costs of a system, while maintaining a reasonable performance. We analyze how the 2-adic valuation of the cardinality of the Jacobian increases in successive quadratic extensions, considering genus 2 curves with odd characteristic fields, including supersingular curves. In addition, we improve the current algorithms for computing the halving of a divisor of a genus 2 curve over binary fields, which can be useful in scalar multiplication, the main operation in public key cryptography using curves. As regards to privacy, we present a pay-by-phone parking system which enables drivers to pay for public parking while preserving their privacy, and thus impeding the service provider or an attacker to obtain a profile of parking behaviors. Finally, we offer better protocols for smart metering, especially regarding privacy and the avoidance of trusted third parties

    Efficient implementation of elliptic curve cryptography.

    Get PDF
    Elliptic Curve Cryptosystems (ECC) were introduced in 1985 by Neal Koblitz and Victor Miller. Small key size made elliptic curve attractive for public key cryptosystem implementation. This thesis introduces solutions of efficient implementation of ECC in algorithmic level and in computation level. In algorithmic level, a fast parallel elliptic curve scalar multiplication algorithm based on a dual-processor hardware system is developed. The method has an average computation time of n3 Elliptic Curve Point Addition on an n-bit scalar. The improvement is n Elliptic Curve Point Doubling compared to conventional methods. When a proper coordinate system and binary representation for the scalar k is used the average execution time will be as low as n Elliptic Curve Point Doubling, which makes this method about two times faster than conventional single processor multipliers using the same coordinate system. In computation level, a high performance elliptic curve processor (ECP) architecture is presented. The processor uses parallelism in finite field calculation to achieve high speed execution of scalar multiplication algorithm. The architecture relies on compile-time detection rather than of run-time detection of parallelism which results in less hardware. Implemented on FPGA, the proposed processor operates at 66MHz in GF(2 167) and performs scalar multiplication in 100muSec, which is considerably faster than recent implementations.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .A57. Source: Masters Abstracts International, Volume: 44-03, page: 1446. Thesis (M.A.Sc.)--University of Windsor (Canada), 2005

    Genetic programming for improved cryptanalysis of elliptic curve cryptosystems

    Get PDF
    The authors would like to thank Brian Ross and Joseph Brown for their helpful comments and suggestions.Public-key cryptography is a fundamental compo- nent of modern electronic communication that can be constructed with many different mathematical processes. Presently, cryp- tosystems based on elliptic curves are becoming popular due to strong cryptographic strength per small key size. At the heart of these schemes is the intractability of the elliptic curve discrete logarithm problem (ECDLP). Pollard’s Rho algorithm is a well known method for solving the ECDLP and thereby breaking ciphers based on elliptic curves. It has the same time complexity as other known methods but is advantageous due to smaller memory requirements. This paper considers how to speed up the Rho process by modifying a key component: the iterating function, which is the part of the algorithm responsible for determining what point is considered next when looking for a collision. It is replaced with an alternative that is found through an evolutionary process. This alternative consistently and significantly decreases the number of iterations required by Pollard’s Rho Algorithm to successfully find a solution to the ECDLP.The reported study was funded in part by the Natural Sciences and Engineering Research Council of Canada

    Implementação eficiente da Curve25519 para microcontroladores ARM

    Get PDF
    Orientador: Diego de Freitas AranhaDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Com o advento da computação ubíqua, o fenômeno da Internet das Coisas (de Internet of Things) fará que com inúmeros dispositivos conectem-se um com os outros, enquanto trocam dados muitas vezes sensíveis pela sua natureza. Danos irreparáveis podem ser causados caso o sigilo destes seja quebrado. Isso causa preocupações acerca da segurança da comunicação e dos próprios dispositivos, que geralmente têm carência de mecanismos de proteção contra interferências físicas e pouca ou nenhuma medida de segurança. Enquanto desenvolver criptografia segura e eficiente como um meio de prover segurança à informação não é inédito, esse novo ambiente, com uma grande superfície de ataque, tem imposto novos desafios para a engenharia criptográfica. Uma abordagem segura para resolver este problema é utilizar blocos bem conhecidos e profundamente analisados, tal como o protocolo Segurança da Camada de Transporte (de Transport Layer Security, TLS). Na última versão desse padrão, as opções para Criptografia de Curvas Elípticas (de Elliptic Curve Cryptography - ECC) são expandidas para além de parâmetros estabelecidos por governos, tal como a proposta Curve25519 e protocolos criptográficos relacionados. Esse trabalho pesquisa implementações seguras e eficientes de Curve25519 para construir um esquema de troca de chaves em um microcontrolador ARM Cortex-M4, além do esquema de assinatura digital Ed25519 e a proposta de esquema de assinaturas digitais qDSA. Como resultado, operações de desempenho crítico, tal como o multiplicador de 256 bits, foram otimizadas; em particular, aceleração de 50% foi alcançada, impactando o desempenho de protocolos em alto nívelAbstract: With the advent of ubiquitous computing, the Internet of Things will undertake numerous devices connected to each other, while exchanging data often sensitive by nature. Breaching the secrecy of this data may cause irreparable damage. This raises concerns about the security of their communication and the devices themselves, which usually lack tamper resistance mechanisms or physical protection and even low to no security mesures. While developing efficient and secure cryptography as a mean to provide information security services is not a new problem, this new environment, with a wide attack surface, imposes new challenges to cryptographic engineering. A safe approach to solve this problem is reusing well-known and thoroughly analyzed blocks, such as the Transport Layer Security (TLS) protocol. In the last version of this standard, Elliptic Curve Cryptography options were expanded beyond government-backed parameters, such as the Curve25519 proposal and related cryptographic protocols. This work investigates efficient and secure implementations of Curve25519 to build a key exchange protocol on an ARM Cortex-M4 microcontroller, along the related signature scheme Ed25519 and a digital signature scheme proposal called qDSA. As result, performance-critical operations, such as a 256-bit multiplier, are greatly optimized; in this particular case, a 50% speedup is achieved, impacting the performance of higher-level protocolsMestradoCiência da ComputaçãoMestre em Ciência da ComputaçãoCAPESFuncam

    Efficient and Secure ECDSA Algorithm and its Applications: A Survey

    Get PDF
    Public-key cryptography algorithms, especially elliptic curve cryptography (ECC)and elliptic curve digital signature algorithm (ECDSA) have been attracting attention frommany researchers in different institutions because these algorithms provide security andhigh performance when being used in many areas such as electronic-healthcare, electronicbanking,electronic-commerce, electronic-vehicular, and electronic-governance. These algorithmsheighten security against various attacks and the same time improve performanceto obtain efficiencies (time, memory, reduced computation complexity, and energy saving)in an environment of constrained source and large systems. This paper presents detailedand a comprehensive survey of an update of the ECDSA algorithm in terms of performance,security, and applications
    • …
    corecore