169 research outputs found

    Speeding up switch Markov chains for sampling bipartite graphs with given degree sequence

    Get PDF
    We consider the well-studied problem of uniformly sampling (bipartite) graphs with a given degree sequence, or equivalently, the uniform sampling of binary matrices with fixed row and column sums. In particular, we focus on Markov Chain Monte Carlo (MCMC) approaches, which proceed by making small changes that preserve the degree sequence to a given graph. Such Markov chains converge to the uniform distribution, but the challenge is to show that they do so quickly, i.e., that they are rapidly mixing. The standard example of this Markov chain approach for sampling bipartite graphs is the switch algorithm, that proceeds by locally switching two edges while preserving the degree sequence. The Curveball algorithm is a variation on this approach in which essentially multiple switches (trades) are performed simultaneously, with the goal of speeding up switch-based algorithms. Even though the Curveball algorithm is expected to mix faster than switch-based algorithms for many degree sequences, nothing is currently known about its mixing time. On the other hand, the switch algorithm has been proven to be rapidly mixing for several classes of degree sequences. In this work we present the first results regarding the mixing time of the Curveball algorithm. We give a theoretical comparison between the switch and Curveball algorithms in terms of their underlying Markov chains. As our main result, we show that the Curveball chain is rapidly mixing whenever a switch-based chain is rapidly mixing. We do this using a novel state space graph decomposition of the switch chain into Johnson graphs. This decomposition is of independent interest

    Sampling Hypergraphs with Given Degrees

    Get PDF
    There is a well-known connection between hypergraphs and bipartite graphs, obtained by treating the incidence matrix of the hypergraph as the biadjacency matrix of a bipartite graph. We use this connection to describe and analyse a rejection sampling algorithm for sampling simple uniform hypergraphs with a given degree sequence. Our algorithm uses, as a black box, an algorithm A\mathcal{A} for sampling bipartite graphs with given degrees, uniformly or nearly uniformly, in (expected) polynomial time. The expected runtime of the hypergraph sampling algorithm depends on the (expected) runtime of the bipartite graph sampling algorithm A\mathcal{A}, and the probability that a uniformly random bipartite graph with given degrees corresponds to a simple hypergraph. We give some conditions on the hypergraph degree sequence which guarantee that this probability is bounded below by a constant

    Approximate Sampling and Counting of Graphs with Near-Regular Degree Intervals

    Get PDF
    The approximate uniform sampling of graphs with a given degree sequence is a well-known, extensively studied problem in theoretical computer science and has significant applications, e.g., in the analysis of social networks. In this work we study an extension of the problem, where degree intervals are specified rather than a single degree sequence. We are interested in sampling and counting graphs whose degree sequences satisfy the degree interval constraints. A natural scenario where this problem arises is in hypothesis testing on social networks that are only partially observed. In this work, we provide the first fully polynomial almost uniform sampler (FPAUS) as well as the first fully polynomial randomized approximation scheme (FPRAS) for sampling and counting, respectively, graphs with near-regular degree intervals, in which every node ii has a degree from an interval not too far away from a given dNd \in \N. In order to design our FPAUS, we rely on various state-of-the-art tools from Markov chain theory and combinatorics. In particular, we provide the first non-trivial algorithmic application of a breakthrough result of Liebenau and Wormald (2017) regarding an asymptotic formula for the number of graphs with a given near-regular degree sequence. Furthermore, we also make use of the recent breakthrough of Anari et al. (2019) on sampling a base of a matroid under a strongly log-concave probability distribution. As a more direct approach, we also study a natural Markov chain recently introduced by Rechner, Strowick and M\"uller-Hannemann (2018), based on three simple local operations: Switches, hinge flips, and additions/deletions of a single edge. We obtain the first theoretical results for this Markov chain by showing it is rapidly mixing for the case of near-regular degree intervals of size at most one

    Rapid mixing of the switch Markov chain for strongly stable degree sequences and 2-class joint degree matrices

    Get PDF
    The switch Markov chain has been extensively studied as the most natural Markov Chain Monte Carlo approach for sampling graphs with prescribed degree sequences. We use comparison arguments with other, less natural but simpler to analyze, Markov chains, to show that the switch chain mixes rapidly in two different settings. We first study the classic problem of uniformly sampling simple undirected, as well as bipartite, graphs with a given degree sequence. We apply an embedding argument, involving a Markov chain defined by Jerrum and Sinclair (TCS, 1990) for sampling graphs that almost have a given degree sequence, to show rapid mixing for degree sequences satisfying strong stability, a notion closely related to P-stability. This results in a much shorter proof that unifies the currently known rapid mixing results of the switch chain and extends them up to sharp characterizations of P-stability. In particular, our work resolves an open problem posed by Greenhill (SODA, 2015).Secondly, in order to illustrate the power of our approach, we study the problem of uniformly sampling graphs for which, in addition to the degree sequence, a joint degree distribution is given. Although the problem was formalized over a decade ago, and despite its practical significance in generating synthetic network topologies, small progress has been made on the random sampling of such graphs. The case of a single degree class reduces to sampling of regular graphs, but beyond this almost nothing is known. We fully resolve the case of two degree classes, by showing that the switch Markov chain is always rapidly mixing. Again, we first analyze an auxiliary chain for strongly stable instances on an augmented state space and then use an embedding argument.</p

    Rapid Mixing of the Switch Markov Chain for Strongly Stable Degree Sequences and 2-Class Joint Degree Matrices

    Get PDF
    The switch Markov chain has been extensively studied as the most natural Markov Chain Monte Carlo approach for sampling graphs with prescribed degree sequences. We use comparison arguments with other, less natural but simpler to analyze, Markov chains, to show that the switch chain mixes rapidly in two different settings. We first study the classic problem of uniformly sampling simple undirected, as well as bipartite, graphs with a given degree sequence. We apply an embedding argument, involving a Markov chain defined by Jerrum and Sinclair (TCS, 1990) for sampling graphs that almost have a given degree sequence, to show rapid mixing for degree sequences satisfying strong stability, a notion closely related to PP-stability. This results in a much shorter proof that unifies the currently known rapid mixing results of the switch chain and extends them up to sharp characterizations of PP-stability. In particular, our work resolves an open problem posed by Greenhill (SODA, 2015). Secondly, in order to illustrate the power of our approach, we study the problem of uniformly sampling graphs for which, in addition to the degree sequence, a joint degree distribution is given. Although the problem was formalized over a decade ago, and despite its practical significance in generating synthetic network topologies, small progress has been made on the random sampling of such graphs. The case of a single degree class reduces to sampling of regular graphs, but beyond this almost nothing is known. We fully resolve the case of two degree classes, by showing that the switch Markov chain is always rapidly mixing. Again, we first analyze an auxiliary chain for strongly stable instances on an augmented state space and then use an embedding argument.Comment: Accepted to SODA 201

    Mixing time for uniform sampling of bipartite graphs with fixed degrees using the trade algorithm

    Full text link
    Uniform sampling of bipartite graphs and hypergraphs with given degree sequences is necessary for building null models to statistically evaluate their topology. Because these graphs can be represented as binary matrices, the problem is equivalent to uniformly sampling r×cr \times c binary matrices with fixed row and column sums. The trade algorithm, which includes both the curveball and fastball implementations, is the state-of-the-art for performing such sampling. Its mixing time is currently unknown, although 5r5r is currently used as a heuristic. In this paper we propose a new distribution-based approach that not only provides an estimation of the mixing time, but also actually returns a sample of matrices that are guaranteed (within a user-chosen error tolerance) to be uniformly randomly sampled. In numerical experiments on matrices that vary by size, fill, and row and column sum distributions, we find that the upper bound on mixing time is at least 10r10r, and that it increases as a function of both cc and the fraction of cells containing a 1

    Rapid mixing of the switch Markov chain for strongly stable degree sequences

    Get PDF
    The switch Markov chain has been extensively studied as the most natural Markov chain Monte Carlo approach for sampling graphs with prescribed degree sequences. We show that the switch chain for sampling simple undirected graphs with a given degree sequence is rapidly mixing when the degree sequence is so‐called strongly stable. Strong stability is satisfied by all degree sequences for which the switch chain was known to be rapidly mixing based on Sinclair's multicommodity flow method up until a recent manuscript of Erdős and coworkers in 2019. Our approach relies on an embedding argument, involving a Markov chain defined by Jerrum and Sinclair in 1990. This results in a much shorter proof that unifies (almost) all the rapid mixing results for the switch chain in the literature, and extends them up to sharp characterizations of P‐stable degree sequences. In particular, our work resolves an open problem posed by Greenhill and Sfragara in 2017
    corecore