254 research outputs found

    Machine Learning Based Applications for Data Visualization, Modeling, Control, and Optimization for Chemical and Biological Systems

    Get PDF
    This dissertation report covers Yan Ma’s Ph.D. research with applicational studies of machine learning in manufacturing and biological systems. The research work mainly focuses on reaction modeling, optimization, and control using a deep learning-based approaches, and the work mainly concentrates on deep reinforcement learning (DRL). Yan Ma’s research also involves with data mining with bioinformatics. Large-scale data obtained in RNA-seq is analyzed using non-linear dimensionality reduction with Principal Component Analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE), and Uniform Manifold Approximation and Projection (UMAP), followed by clustering analysis using k-Means and Hierarchical Density-Based Spatial Clustering with Noise (HDBSCAN). This report focuses on 3 case studies with DRL optimization control including a polymerization reaction control with deep reinforcement learning, a bioreactor optimization, and a fed-batch reaction optimization from a reactor at Dow Inc.. In the first study, a data-driven controller based on DRL is developed for a fed-batch polymerization reaction with multiple continuous manipulative variables with continuous control. The second case study is the modeling and optimization of a bioreactor. In this study, a data-driven reaction model is developed using Artificial Neural Network (ANN) to simulate the growth curve and bio-product accumulation of cyanobacteria Plectonema. Then a DRL control agent that optimizes the daily nutrient input is applied to maximize the yield of valuable bio-product C-phycocyanin. C-phycocyanin yield is increased by 52.1% compared to a control group with the same total nutrient content in experimental validation. The third case study is employing the data-driven control scheme for optimization of a reactor from Dow Inc, where a DRL-based optimization framework is established for the optimization of the Multi-Input, Multi-Output (MIMO) reaction system with reaction surrogate modeling. Yan Ma’s research overall shows promising directions for employing the emerging technologies of data-driven methods and deep learning in the field of manufacturing and biological systems. It is demonstrated that DRL is an efficient algorithm in the study of three different reaction systems with both stochastic and deterministic policies. Also, the use of data-driven models in reaction simulation also shows promising results with the non-linear nature and fast computational speed of the neural network models

    Optimal Wheelchair Multi-LiDAR Placement for Indoor SLAM

    Get PDF
    One of the most prevalent technologies used in modern robotics is Simultaneous Localization and Mapping or, SLAM. Modern SLAM technologies usually employ a number of different probabilistic mathematics to perform processes that enable modern robots to not only map an environment but, also, concurrently localize themselves within said environment. Existing open-source SLAM technologies not only range in the different probabilistic methods they employ to achieve their task but, also, by how well the task is achieved and by their computational requirements. Additionally, the positioning of the sensors in the robot also has a substantial effect on how well these technologies work. Therefore, this dissertation is dedicated to the comparison of existing open-source ROS implemented 2D SLAM technologies and in the maximization of the performance of said SLAM technologies by researching optimal sensor placement in a Intelligent Wheelchair context, using SLAM performance as a benchmark

    Doctor of Philosophy

    Get PDF
    dissertationDeep Neural Networks (DNNs) are the state-of-art solution in a growing number of tasks including computer vision, speech recognition, and genomics. However, DNNs are computationally expensive as they are carefully trained to extract and abstract features from raw data using multiple layers of neurons with millions of parameters. In this dissertation, we primarily focus on inference, e.g., using a DNN to classify an input image. This is an operation that will be repeatedly performed on billions of devices in the datacenter, in self-driving cars, in drones, etc. We observe that DNNs spend a vast majority of their runtime to runtime performing matrix-by-vector multiplications (MVM). MVMs have two major bottlenecks: fetching the matrix and performing sum-of-product operations. To address these bottlenecks, we use in-situ computing, where the matrix is stored in programmable resistor arrays, called crossbars, and sum-of-product operations are performed using analog computing. In this dissertation, we propose two hardware units, ISAAC and Newton.In ISAAC, we show that in-situ computing designs can outperform DNN digital accelerators, if they leverage pipelining, smart encodings, and can distribute a computation in time and space, within crossbars, and across crossbars. In the ISAAC design, roughly half the chip area/power can be attributed to the analog-to-digital conversion (ADC), i.e., it remains the key design challenge in mixed-signal accelerators for deep networks. In spite of the ADC bottleneck, ISAAC is able to out-perform the computational efficiency of the state-of-the-art design (DaDianNao) by 8x. In Newton, we take advantage of a number of techniques to address ADC inefficiency. These techniques exploit matrix transformations, heterogeneity, and smart mapping of computation to the analog substrate. We show that Newton can increase the efficiency of in-situ computing by an additional 2x. Finally, we show that in-situ computing, unfortunately, cannot be easily adapted to handle training of deep networks, i.e., it is only suitable for inference of already-trained networks. By improving the efficiency of DNN inference with ISAAC and Newton, we move closer to low-cost deep learning that in turn will have societal impact through self-driving cars, assistive systems for the disabled, and precision medicine

    Convergence of Intelligent Data Acquisition and Advanced Computing Systems

    Get PDF
    This book is a collection of published articles from the Sensors Special Issue on "Convergence of Intelligent Data Acquisition and Advanced Computing Systems". It includes extended versions of the conference contributions from the 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS’2019), Metz, France, as well as external contributions
    • …
    corecore